{-# OPTIONS --guardedness #-}
open import Data.Empty
open import Data.Product
open import Data.List using ([]; _∷_; _∷ʳ_)
open import Relation.Unary using (_∈_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
import Relation.Binary.HeterogeneousEquality as Het
open import Common
module Transitions {ℙ : Set} (message : Message ℙ)
where
open import SessionType message
open import Trace message
data Transition : SessionType -> Action -> SessionType -> Set where
inp : ∀{f x} -> Transition (inp f) (I x) (f x .force)
out : ∀{f x} (!x : x ∈ dom f) -> Transition (out f) (O x) (f x .force)
data Transitions : SessionType -> Trace -> SessionType -> Set where
refl : ∀{T} -> Transitions T [] T
step : ∀{T α T' φ T''} (t : Transition T α T') (tr : Transitions T' φ T'') -> Transitions T (α ∷ φ) T''
transition->defined : ∀{T a S} -> Transition T a S -> Defined T
transition->defined inp = inp
transition->defined (out _) = out
output-transition->defined : ∀{T x S} -> Transition T (O x) S -> Defined S
output-transition->defined (out !x) = !x
output-transitions->defined : ∀{T φ x S} -> Transitions T (φ ∷ʳ O x) S -> Defined S
output-transitions->defined {_} {[]} (step (out fx) refl) = fx
output-transitions->defined {_} {_ ∷ _} (step _ tr) = output-transitions->defined tr
unsnoc-transitions : ∀{T φ α S} -> Transitions T (φ ∷ʳ α) S -> ∃[ R ] (Transitions T φ R × Transition R α S)
unsnoc-transitions {_} {[]} (step t refl) = _ , refl , t
unsnoc-transitions {_} {x ∷ φ} (step t tr) with unsnoc-transitions tr
... | _ , sr , s = _ , step t sr , s
transitions+defined->defined : ∀{T as S} -> Transitions T as S -> Defined S -> Defined T
transitions+defined->defined refl def = def
transitions+defined->defined (step t _) _ = transition->defined t
transitions-eq : ∀{T T' T'' φ} (tr : Transitions T φ T') (sr : Transitions T φ T'') ->
T' ≡ T'' × tr Het.≅ sr
transitions-eq refl refl = refl , Het.refl
transitions-eq (step inp tr) (step inp sr) with transitions-eq tr sr
... | refl , Het.refl = refl , Het.refl
transitions-eq (step (out fx) tr) (step (out gx) sr) with Defined-eq fx gx | transitions-eq tr sr
... | refl | refl , Het.refl = refl , Het.refl
win-reduces-⊥ : ∀{S S' α} → Win S → Transition S α S' → ⊥
win-reduces-⊥ (out e) (out !x) = e _ !x