
A Formal Account of Contracts for Web Services

Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, Luca Padovani

University of Bologna, University of Urbino, École Normale Supérieure de Paris

8 september 2006

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 1 / 19

Summary

Contracts and technologies for Web Services

A language of contracts

Subcontract relation and contract compliance

Contract synthesis and process compliance

Contract compliance ⇒ process compliance

Concluding remarks

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 2 / 19

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

Use:

dynamic discovery

dynamic composition

type checking

debugging

automatic code generation

run-time analysis

Focus:

communication between two parties (no choreography)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 3 / 19

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

Use:

dynamic discovery

dynamic composition

type checking

debugging

automatic code generation

run-time analysis

Focus:

communication between two parties (no choreography)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 3 / 19

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

Use:

dynamic discovery

dynamic composition

type checking

debugging

automatic code generation

run-time analysis

Focus:

communication between two parties (no choreography)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 3 / 19

Contracts in WSDL

Focus on the static interface:

Interface = set of operations

Operation = name + message exchange pattern (MEP)

<operation name="A"

pattern="http://www.w3.org/2006/01/wsdl/in-only">

<input messageLabel="In"/>

</operation>

<operation name="B"

pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">

<input messageLabel="In"/>

<outfault messageLabel="Fault"/>

</operation>

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 4 / 19

Contracts in WSCL

Focus on the dynamic interface:

Conversation = Interactions + Transitions

Interaction = Types of exchanged messages

+ distinction between internal and external choice

+ possibly cyclic patterns

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 5 / 19

Contracts in WSCL

Focus on the dynamic interface:

Conversation = Interactions + Transitions

Interaction = Types of exchanged messages

+ distinction between internal and external choice

+ possibly cyclic patterns

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 5 / 19

Contracts in WSCL

Focus on the dynamic interface:

Conversation = Interactions + Transitions

Interaction = Types of exchanged messages

+ distinction between internal and external choice

+ possibly cyclic patterns

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 5 / 19

Encoding MEPs into contracts

<operation name="A"

pattern="http://www.w3.org/2006/01/wsdl/in-only">

<input messageLabel="In"/>

</operation>

<operation name="B"

pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">

<input messageLabel="In"/>

<outfault messageLabel="Fault"/>

</operation>

A
def
= In.End

B
def
= In.(End⊕ Fault.End)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 6 / 19

Encoding WSCL into contracts

Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(
Logout.End+ Purchase.(

Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 7 / 19

Encoding WSCL into contracts

Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(
Logout.End+ Purchase.(

Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 7 / 19

Encoding WSCL into contracts

Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(
Logout.End+ Purchase.(

Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 7 / 19

Encoding WSCL into contracts

Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(
Logout.End+ Purchase.(

Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 7 / 19

A formal contract language

contracts σ ::=
0 (void)
α.σ (action prefix)
σ + σ (external choice)
σ ⊕ σ (internal choice)

actions α ::=
a (name)
a (co-name)

Names represent types, operations, . . .

c.f. De Nicola, Hennessy, “CCS without τ ’s”

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 8 / 19

A formal contract language

contracts σ ::=
0 (void)
α.σ (action prefix)
σ + σ (external choice)
σ ⊕ σ (internal choice)

actions α ::=
a (name)
a (co-name)

Names represent types, operations, . . .

c.f. De Nicola, Hennessy, “CCS without τ ’s”

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 8 / 19

A formal contract language

contracts σ ::=
0 (void)
α.σ (action prefix)
σ + σ (external choice)
σ ⊕ σ (internal choice)

actions α ::=
a (name)
a (co-name)

Names represent types, operations, . . .

c.f. De Nicola, Hennessy, “CCS without τ ’s”

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 8 / 19

Comparing contracts: the subcontract relation ⪯

σ is a subcontract of σ′ if σ′ is more deterministic than σ

a⊕ b ⪯ a+ b a⊕ b ⪯ a

In.(End⊕ Fault.End) ⪯ In.End

(c.f. must pre-order)

σ is a subcontract of σ′ if σ′ has more interacting capabilities than σ

a ⪯ a.b a ⪯ a+ b 0 ⪯ σ

Logout+ Purchase ⪯ Logout+ Purchase+ BuyLater

(⪯ is different from testing, must, may, . . .)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 9 / 19

Comparing contracts: the subcontract relation ⪯

σ is a subcontract of σ′ if σ′ is more deterministic than σ

a⊕ b ⪯ a+ b a⊕ b ⪯ a

In.(End⊕ Fault.End) ⪯ In.End

(c.f. must pre-order)

σ is a subcontract of σ′ if σ′ has more interacting capabilities than σ

a ⪯ a.b a ⪯ a+ b 0 ⪯ σ

Logout+ Purchase ⪯ Logout+ Purchase+ BuyLater

(⪯ is different from testing, must, may, . . .)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 9 / 19

Comparing contracts: the subcontract relation ⪯

σ is a subcontract of σ′ if σ′ is more deterministic than σ

a⊕ b ⪯ a+ b a⊕ b ⪯ a

In.(End⊕ Fault.End) ⪯ In.End

(c.f. must pre-order)

σ is a subcontract of σ′ if σ′ has more interacting capabilities than σ

a ⪯ a.b a ⪯ a+ b 0 ⪯ σ

Logout+ Purchase ⪯ Logout+ Purchase+ BuyLater

(⪯ is different from testing, must, may, . . .)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 9 / 19

Comparing contracts: the subcontract relation ⪯

σ is a subcontract of σ′ if σ′ is more deterministic than σ

a⊕ b ⪯ a+ b a⊕ b ⪯ a

In.(End⊕ Fault.End) ⪯ In.End

(c.f. must pre-order)

σ is a subcontract of σ′ if σ′ has more interacting capabilities than σ

a ⪯ a.b a ⪯ a+ b 0 ⪯ σ

Logout+ Purchase ⪯ Logout+ Purchase+ BuyLater

(⪯ is different from testing, must, may, . . .)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 9 / 19

Summary of the technical part

1 define contract transition and ready sets

2 define subcontract ⪯ and contract compliance ≪
3 synthesize contracts out of processes

4 define process compliance as “successful interaction”

5 prove that contract compliance implies process compliance

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 10 / 19

Contracts: transition relation

Interacting party’s point of view:

a.b + a.c
a7−→ b ⊕ c

α.σ
α7−→ σ

σ1
α7−→ σ′

1 σ2
α7−→ σ′

2

σ1 + σ2
α7−→ σ′

1 ⊕ σ′
2

σ1
α7−→ σ′

1 σ2 X α7−→

σ1 + σ2
α7−→ σ′

1

σ1
α7−→ σ′

1 σ2
α7−→ σ′

2

σ1 ⊕ σ2
α7−→ σ′

1 ⊕ σ′
2

σ1
α7−→ σ′

1 σ2 X α7−→

σ1 ⊕ σ2
α7−→ σ′

1

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 11 / 19

Contracts: transition relation

Interacting party’s point of view:

a.b + a.c
a7−→ b ⊕ c

α.σ
α7−→ σ

σ1
α7−→ σ′

1 σ2
α7−→ σ′

2

σ1 + σ2
α7−→ σ′

1 ⊕ σ′
2

σ1
α7−→ σ′

1 σ2 X α7−→

σ1 + σ2
α7−→ σ′

1

σ1
α7−→ σ′

1 σ2
α7−→ σ′

2

σ1 ⊕ σ2
α7−→ σ′

1 ⊕ σ′
2

σ1
α7−→ σ′

1 σ2 X α7−→

σ1 ⊕ σ2
α7−→ σ′

1

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 11 / 19

Contracts: ready sets

σ ⇓ r: the service can be in a state where the actions in r are allowed

0 ⇓ ∅
α.σ ⇓ {α}
(σ + σ′) ⇓ r ∪ r′ if σ ⇓ r and σ′ ⇓ r′

(σ ⊕ σ′) ⇓ r if either σ ⇓ r or σ′ ⇓ r

Example of nondeterministic contract/service:

a⊕ b ⇓ {a} a⊕ b ⇓ {b}

Example of deterministic contract/service:

a+ b ⇓ {a, b}

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 12 / 19

Contracts: ready sets

σ ⇓ r: the service can be in a state where the actions in r are allowed

0 ⇓ ∅
α.σ ⇓ {α}
(σ + σ′) ⇓ r ∪ r′ if σ ⇓ r and σ′ ⇓ r′

(σ ⊕ σ′) ⇓ r if either σ ⇓ r or σ′ ⇓ r

Example of nondeterministic contract/service:

a⊕ b ⇓ {a} a⊕ b ⇓ {b}

Example of deterministic contract/service:

a+ b ⇓ {a, b}

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 12 / 19

Contracts: ready sets

σ ⇓ r: the service can be in a state where the actions in r are allowed

0 ⇓ ∅
α.σ ⇓ {α}
(σ + σ′) ⇓ r ∪ r′ if σ ⇓ r and σ′ ⇓ r′

(σ ⊕ σ′) ⇓ r if either σ ⇓ r or σ′ ⇓ r

Example of nondeterministic contract/service:

a⊕ b ⇓ {a} a⊕ b ⇓ {b}

Example of deterministic contract/service:

a+ b ⇓ {a, b}

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 12 / 19

Subcontract relation

⪯ is the largest relation such that σ1 ⪯ σ2 implies:
1 if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2

2 if σ1
α7−→ σ′

1 and σ2
α7−→ σ′

2 then σ′
1 ⪯ σ′

2

Key:
1 σ2 has no more internal states than σ1 has:

a⊕ b ⪯ a a⊕ b ⪯ b

and they all allow more capabilities than those in σ1:

a⊕ b ⪯ a+ b a ⪯ a+ b

2 if σ1 and σ2 share a common action, the continuations are in the
subcontract relation:

0 ⪯ σ a.b ⪯ a.b + c

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 13 / 19

Subcontract relation

⪯ is the largest relation such that σ1 ⪯ σ2 implies:
1 if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2

2 if σ1
α7−→ σ′

1 and σ2
α7−→ σ′

2 then σ′
1 ⪯ σ′

2

Key:
1 σ2 has no more internal states than σ1 has:

a⊕ b ⪯ a a⊕ b ⪯ b

and they all allow more capabilities than those in σ1:

a⊕ b ⪯ a+ b a ⪯ a+ b

2 if σ1 and σ2 share a common action, the continuations are in the
subcontract relation:

0 ⪯ σ a.b ⪯ a.b + c

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 13 / 19

Subcontract relation

⪯ is the largest relation such that σ1 ⪯ σ2 implies:
1 if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2

2 if σ1
α7−→ σ′

1 and σ2
α7−→ σ′

2 then σ′
1 ⪯ σ′

2

Key:
1 σ2 has no more internal states than σ1 has:

a⊕ b ⪯ a a⊕ b ⪯ b

and they all allow more capabilities than those in σ1:

a⊕ b ⪯ a+ b a ⪯ a+ b

2 if σ1 and σ2 share a common action, the continuations are in the
subcontract relation:

0 ⪯ σ a.b ⪯ a.b + c

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 13 / 19

Subcontract relation

⪯ is the largest relation such that σ1 ⪯ σ2 implies:
1 if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2

2 if σ1
α7−→ σ′

1 and σ2
α7−→ σ′

2 then σ′
1 ⪯ σ′

2

Key:
1 σ2 has no more internal states than σ1 has:

a⊕ b ⪯ a a⊕ b ⪯ b

and they all allow more capabilities than those in σ1:

a⊕ b ⪯ a+ b a ⪯ a+ b

2 if σ1 and σ2 share a common action, the continuations are in the
subcontract relation:

0 ⪯ σ a.b ⪯ a.b + c

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 13 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Client/service duality and contract compliance

If a client has contract σ, what is the “cheapest” service that interacts
successfully with σ?

a+ b ⇒ a⊕ b also a. . .

a⊕ b ⇒ a+ b

a.b + a.c ⇒ a.b ⊕ a.c NO!

a.b + a.c ⇒ a.(b + c)

The dual contract of σ is defined on σ’s normal form:

σ ≃
⊕

σ⇓r
∑

σ
α7−→σ′,α∈r α.σ

′

σ
def
=

∑
σ⇓r,r ̸=∅

⊕
σ

α7−→σ′,α∈r α.σ
′

Contract compliance:

σ ≪ σ′ def
= σ ⪯ σ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 14 / 19

Simple processes: finite CCS without choice

Syntax:

P ::= 0 | a.P | a.P | P \ a | P | P

Transition relation:

(in)

a.P
a−→ P

(out)

a.P
a−→ P

(res)

P
µ−→ Q µ ̸∈ {a, a}

P \ a µ−→ Q \ a

(par)

P
µ−→ Q

P | R µ−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q ′

P | Q τ−→ P ′ | Q ′

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 15 / 19

Synthesizing contracts from processes

The type system:

0 ⊢ 0
P ⊢ σ

α.P ⊢ α.σ

P ⊢ σ

P \ a ⊢ σ \ a
P ⊢ σ Q ⊢ σ′

P | Q ⊢ σ | σ′

The \ meta-operator behaves like the axioms for \ in the aziomatization of
must/testing pre-orders:

a.σ \ a = 0
b.σ \ a = b.(σ \ b) a ̸= b

The | meta-operator is just the expansion law (in the testing equivalence):

a | b = a.b + b.a
a | a.b = (a.a.b + a.(a | b) + b)⊕ b

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 16 / 19

Synthesizing contracts from processes

The type system:

0 ⊢ 0
P ⊢ σ

α.P ⊢ α.σ

P ⊢ σ

P \ a ⊢ σ \ a
P ⊢ σ Q ⊢ σ′

P | Q ⊢ σ | σ′

The \ meta-operator behaves like the axioms for \ in the aziomatization of
must/testing pre-orders:

a.σ \ a = 0
b.σ \ a = b.(σ \ b) a ̸= b

The | meta-operator is just the expansion law (in the testing equivalence):

a | b = a.b + b.a
a | a.b = (a.a.b + a.(a | b) + b)⊕ b

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 16 / 19

Synthesizing contracts from processes

The type system:

0 ⊢ 0
P ⊢ σ

α.P ⊢ α.σ

P ⊢ σ

P \ a ⊢ σ \ a
P ⊢ σ Q ⊢ σ′

P | Q ⊢ σ | σ′

The \ meta-operator behaves like the axioms for \ in the aziomatization of
must/testing pre-orders:

a.σ \ a = 0
b.σ \ a = b.(σ \ b) a ̸= b

The | meta-operator is just the expansion law (in the testing equivalence):

a | b = a.b + b.a
a | a.b = (a.a.b + a.(a | b) + b)⊕ b

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 16 / 19

The completion property

How do we characterize a “successful interaction” of a system P ∥Q?

System transition:

if P
τ−→ P ′ then P ∥Q −→ P ′ ∥Q;

if Q
τ−→ Q ′ then P ∥Q −→ P ∥Q ′;

if P
α−→ P ′ and Q

α−→ Q ′ then P ∥Q −→ P ′ ∥Q ′.

P complies with Q, noted P ≪ Q, if either

1 P X α−→, or

2 P ∥Q −→ P ′ ∥Q ′ and P ′ ≪ Q ′

Theorem. If P ⊢ σ, Q ⊢ σ′, and σ ≪ σ′ then P ≪ Q

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 17 / 19

The completion property

How do we characterize a “successful interaction” of a system P ∥Q?

System transition:

if P
τ−→ P ′ then P ∥Q −→ P ′ ∥Q;

if Q
τ−→ Q ′ then P ∥Q −→ P ∥Q ′;

if P
α−→ P ′ and Q

α−→ Q ′ then P ∥Q −→ P ′ ∥Q ′.

P complies with Q, noted P ≪ Q, if either

1 P X α−→, or

2 P ∥Q −→ P ′ ∥Q ′ and P ′ ≪ Q ′

Theorem. If P ⊢ σ, Q ⊢ σ′, and σ ≪ σ′ then P ≪ Q

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 17 / 19

The completion property

How do we characterize a “successful interaction” of a system P ∥Q?

System transition:

if P
τ−→ P ′ then P ∥Q −→ P ′ ∥Q;

if Q
τ−→ Q ′ then P ∥Q −→ P ∥Q ′;

if P
α−→ P ′ and Q

α−→ Q ′ then P ∥Q −→ P ′ ∥Q ′.

P complies with Q, noted P ≪ Q, if either

1 P X α−→, or

2 P ∥Q −→ P ′ ∥Q ′ and P ′ ≪ Q ′

Theorem. If P ⊢ σ, Q ⊢ σ′, and σ ≪ σ′ then P ≪ Q

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 17 / 19

The completion property

How do we characterize a “successful interaction” of a system P ∥Q?

System transition:

if P
τ−→ P ′ then P ∥Q −→ P ′ ∥Q;

if Q
τ−→ Q ′ then P ∥Q −→ P ∥Q ′;

if P
α−→ P ′ and Q

α−→ Q ′ then P ∥Q −→ P ′ ∥Q ′.

P complies with Q, noted P ≪ Q, if either

1 P X α−→, or

2 P ∥Q −→ P ′ ∥Q ′ and P ′ ≪ Q ′

Theorem. If P ⊢ σ, Q ⊢ σ′, and σ ≪ σ′ then P ≪ Q

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 17 / 19

Open issues

is ⪯ the right compatibility relation? It is not a pre-congruence w.r.t. |
⪯ is good for searching, not for typing (subsumption)

≪ is sufficient but not necessary:

P ≡ x | x Q ≡ 0 P ≪ Q however (x .x + x .x)⊕ 0 ̸≪ 0

Is x | x “valid”?

experiment the effectiveness of contracts (PiDuce)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 18 / 19

Open issues

is ⪯ the right compatibility relation? It is not a pre-congruence w.r.t. |
⪯ is good for searching, not for typing (subsumption)

≪ is sufficient but not necessary:

P ≡ x | x Q ≡ 0 P ≪ Q however (x .x + x .x)⊕ 0 ̸≪ 0

Is x | x “valid”?

experiment the effectiveness of contracts (PiDuce)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 18 / 19

Open issues

is ⪯ the right compatibility relation? It is not a pre-congruence w.r.t. |
⪯ is good for searching, not for typing (subsumption)

≪ is sufficient but not necessary:

P ≡ x | x Q ≡ 0 P ≪ Q however (x .x + x .x)⊕ 0 ̸≪ 0

Is x | x “valid”?

experiment the effectiveness of contracts (PiDuce)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 18 / 19

Open issues

is ⪯ the right compatibility relation? It is not a pre-congruence w.r.t. |
⪯ is good for searching, not for typing (subsumption)

≪ is sufficient but not necessary:

P ≡ x | x Q ≡ 0 P ≪ Q however (x .x + x .x)⊕ 0 ̸≪ 0

Is x | x “valid”?

experiment the effectiveness of contracts (PiDuce)

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 18 / 19

Future work

Recursive contracts
µx .σ

How do we infer contracts from processes? Syntactic restrictions over
processes or regular approximations?

Name passing:
a(x).x

Adapting ⪯ to asynchronous communication

Relationship with linear logic and set-theoretic interpretation of
contracts

Contract isomorphisms and automatic generation of adapters:

a.b ⇐⇒ b.a

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 19 / 19

Future work

Recursive contracts
µx .σ

How do we infer contracts from processes? Syntactic restrictions over
processes or regular approximations?

Name passing:
a(x).x

Adapting ⪯ to asynchronous communication

Relationship with linear logic and set-theoretic interpretation of
contracts

Contract isomorphisms and automatic generation of adapters:

a.b ⇐⇒ b.a

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 19 / 19

Future work

Recursive contracts
µx .σ

How do we infer contracts from processes? Syntactic restrictions over
processes or regular approximations?

Name passing:
a(x).x

Adapting ⪯ to asynchronous communication

Relationship with linear logic and set-theoretic interpretation of
contracts

Contract isomorphisms and automatic generation of adapters:

a.b ⇐⇒ b.a

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 19 / 19

Future work

Recursive contracts
µx .σ

How do we infer contracts from processes? Syntactic restrictions over
processes or regular approximations?

Name passing:
a(x).x

Adapting ⪯ to asynchronous communication

Relationship with linear logic and set-theoretic interpretation of
contracts

Contract isomorphisms and automatic generation of adapters:

a.b ⇐⇒ b.a

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 19 / 19

Future work

Recursive contracts
µx .σ

How do we infer contracts from processes? Syntactic restrictions over
processes or regular approximations?

Name passing:
a(x).x

Adapting ⪯ to asynchronous communication

Relationship with linear logic and set-theoretic interpretation of
contracts

Contract isomorphisms and automatic generation of adapters:

a.b ⇐⇒ b.a

Padovani et al. (UniBO, UniURB, ENS) Contracts for Web Services 8 september 2006 19 / 19

	Compatibility of Web Services
	A Simple Contract Language
	When are two contracts compatible?

