A Formal Account of Contracts for Web Services

Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, Luca Padovani

University of Bologna, University of Urbino, École Normale Supérieure de Paris

8 september 2006

Summary

- Contracts and technologies for Web Services
- A language of contracts
- Subcontract relation and contract compliance
- Contract synthesis and process compliance
- Contract compliance \Rightarrow process compliance
- Concluding remarks

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

- dynamic discovery
- dynamic composition
- type checking
- debugging
- automatic code generation
- run-time analysis

Focus:

- communication between two parties (no choreography)

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

Use:

- dynamic discovery
- dynamic composition
- type checking
- debugging
- automatic code generation
- run-time analysis

Focus:

- communication between two parties (no choreography)

Reasoning about compatibility of behavior

Why is it important to formalize the contract of a client or of a service?

Use:

- dynamic discovery
- dynamic composition
- type checking
- debugging
- automatic code generation
- run-time analysis

Focus:

- communication between two parties (no choreography)

Contracts in WSDL

Focus on the static interface:

- Interface $=$ set of operations
- Operation $=$ name + message exchange pattern (MEP)
<operation name="A"
pattern="http://www.w3.org/2006/01/wsdl/in-only">
<input messageLabel="In"/>
</operation>
<operation name="B"
pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">
<input messageLabel="In"/>
<outfault messageLabel="Fault"/>
</operation>

Contracts in WSCL

Focus on the dynamic interface:

- Conversation $=$ Interactions + Transitions
- Interaction $=$ Types of exchanged messages
distinction between internal and external choice
possibly cyclic patterns

Contracts in WSCL

Focus on the dynamic interface:

- Conversation $=$ Interactions + Transitions
- Interaction $=$ Types of exchanged messages
+ distinction between internal and external choice possibly cyclic patterns

Contracts in WSCL

Focus on the dynamic interface:

- Conversation $=$ Interactions + Transitions
- Interaction $=$ Types of exchanged messages
+ distinction between internal and external choice
+ possibly cyclic patterns

Encoding MEPs into contracts

<operation name="A"
pattern="http://www.w3.org/2006/01/wsdl/in-only">
<input messageLabel="In"/>
</operation>
<operation name="B"
pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">
<input messageLabel="In"/>
<outfault messageLabel="Fault"/>
</operation>

$$
\begin{array}{ll}
A & \stackrel{\text { def }}{=} \\
B & \text { In. } \overline{\text { End }} \\
= & \text { In. }(\overline{\text { End }} \oplus \overline{\text { Fault }} . \overline{\text { End }})
\end{array}
$$

Encoding WSCL into contracts

> Login.(InvalidLogin End $\oplus \overline{\text { ValidLogin. Query.Catalog.(}}$
> Logout.End + Purchase.(
> $\overline{\text { Accepted. End } \oplus \overline{\text { InvalidPayment. End }} \oplus \overline{\text { OutOfStock. End }})))}$

Encoding WSCL into contracts

Login.(InvalidLogin End $\oplus \overline{\text { ValidLogin. }}$ Query.Catalog Logout.End + Purchase.($\overline{\text { Accepted.End } \oplus \text { InvalidPayment. End } \oplus \text { Out0fStock. End }) \text {) }) ~}$

Encoding WSCL into contracts

Encoding WSCL into contracts

Login.($\overline{\text { InvalidLogin.End }} \oplus \overline{\text { ValidLogin. }}$ Query. $\overline{\text { Catalog. }}$ (
Logout. End + Purchase. (
$\overline{\text { Accepted. }} . \overline{\text { End }} \oplus \overline{\text { InvalidPayment. }} . \overline{\text { End }} \oplus \overline{\text { OutOfStock. }} . \overline{\text { End }}))$)

A formal contract language

contracts $\quad \sigma \quad::=$

$\mathbf{0}$	(void)
$\alpha . \sigma$	(action prefix)
$\sigma+\sigma$	(external choice)
$\sigma \oplus \sigma$	(internal choice)

actions $\quad \alpha \quad::=$

a	(name)
\bar{a}	(co-name)

Names represent types, operations,
c.f. De Nicola, Hennessy,
"CCS without τ 's"

A formal contract language

contracts $\quad \sigma \quad::=$

$\mathbf{0}$	(void)
$\alpha . \sigma$	(action prefix)
$\sigma+\sigma$	(external choice)
$\sigma \oplus \sigma$	(internal choice)

actions $\quad \alpha \quad::=$

a	(name)
\bar{a}	(co-name)

Names represent types, operations, ...
c.f. De Nicola, Hennessy,
"CCS without T's"

A formal contract language

contracts $\quad \sigma \quad::=$

$\mathbf{0}$	(void)
$\alpha \cdot \sigma$	(action prefix)
$\sigma+\sigma$	(external choice)
$\sigma \oplus \sigma$	(internal choice)

actions $\quad \alpha \quad::=$

a	(name)
\bar{a}	(co-name)

Names represent types, operations, ...
c.f. De Nicola, Hennessy, "CCS without τ 's"

Comparing contracts: the subcontract relation \preceq

σ is a subcontract of σ^{\prime} if σ^{\prime} is more deterministic than σ

$$
\begin{array}{ll}
a \oplus b \preceq a+b & a \oplus b \preceq a \\
\text { In. }(\text { End } \oplus \overline{\text { Fault. End }}) \preceq \operatorname{In} . \text { End }
\end{array}
$$

(c.f. must pre-order)

σ is a subcontract of σ if σ^{\prime} has more interacting capabilities than σ

$$
\text { Logout }+ \text { Purchase } \preceq \text { Logout }+ \text { Purchase }+ \text { BuyLater }
$$

(\preceq is different from testing, must, may, ...)

Comparing contracts: the subcontract relation \preceq

σ is a subcontract of σ^{\prime} if σ^{\prime} is more deterministic than σ

$$
\begin{array}{ll}
a \oplus b \preceq a+b & a \oplus b \preceq a \\
\text { In. }(\overline{\text { End }} \oplus \overline{\text { Fault }} . \overline{\text { End }}) \preceq \text { In. } \overline{\text { End }}
\end{array}
$$

(c.f. must pre-order)

(\preceq is different from testing, must, may, ...)

Comparing contracts: the subcontract relation \preceq

σ is a subcontract of σ^{\prime} if σ^{\prime} is more deterministic than σ

$$
\begin{array}{ll}
a \oplus b \preceq a+b & a \oplus b \preceq a \\
\text { In. }(\overline{\text { End }} \oplus \overline{\text { Fault } . ~} \overline{\text { End }}) \preceq \text { In. } \overline{\text { End }}
\end{array}
$$

(c.f. must pre-order)
σ is a subcontract of σ^{\prime} if σ^{\prime} has more interacting capabilities than σ

$$
a \preceq a . b \quad a \preceq a+b \quad \mathbf{0} \preceq \sigma
$$

Logout + Purchase \preceq Logout + Purchase + BuyLater

(α is different from testing, must, may, ...)

Comparing contracts: the subcontract relation \preceq

σ is a subcontract of σ^{\prime} if σ^{\prime} is more deterministic than σ

$$
a \oplus b \preceq a+b \quad a \oplus b \preceq a
$$

$$
\text { In. }(\overline{\text { End }} \oplus \overline{\text { Fault } . ~} \overline{\text { End }}) \preceq \text { In. } \overline{\text { End }}
$$

(c.f. must pre-order)
σ is a subcontract of σ^{\prime} if σ^{\prime} has more interacting capabilities than σ

$$
a \preceq a . b \quad a \preceq a+b \quad \mathbf{0} \preceq \sigma
$$

Logout + Purchase \preceq Logout + Purchase + BuyLater (\preceq is different from testing, must, may, ...)

Summary of the technical part

(1) define contract transition and ready sets
(2) define subcontract \preceq and contract compliance \ll
(3) synthesize contracts out of processes
(9) define process compliance as "successful interaction"
(5) prove that contract compliance implies process compliance

Contracts: transition relation

Interacting party's point of view:

$$
a . b+a . c \stackrel{a}{\longmapsto} b \oplus c
$$

Contracts: transition relation

Interacting party's point of view:

$$
a . b+a . c \stackrel{a}{\longmapsto} b \oplus c
$$

$$
\alpha . \sigma \stackrel{\alpha}{\longmapsto} \sigma
$$

$$
\frac{\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \quad \sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}}{\sigma_{1}+\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \oplus \sigma_{2}^{\prime}}
$$

$$
\frac{\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \quad \sigma_{2} \stackrel{\alpha}{\longmapsto}}{\sigma_{1}+\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}}
$$

$$
\frac{\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \quad \sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}}{\sigma_{1} \oplus \sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \oplus \sigma_{2}^{\prime}}
$$

$$
\frac{\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime} \quad \sigma_{2} \stackrel{\alpha}{\longmapsto}}{\sigma_{1} \oplus \sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}}
$$

Contracts: ready sets

$\sigma \Downarrow \mathrm{R}$: the service can be in a state where the actions in R are allowed
$0 \Downarrow \emptyset$
$\alpha . \sigma \Downarrow\{\alpha\}$
$\left(\sigma+\sigma^{\prime}\right) \Downarrow \mathrm{R} \cup \mathrm{R}^{\prime} \quad$ if $\sigma \Downarrow \mathrm{R}$ and $\sigma^{\prime} \Downarrow \mathrm{R}^{\prime}$
$\left(\sigma \oplus \sigma^{\prime}\right) \Downarrow \mathrm{R} \quad$ if either $\sigma \Downarrow \mathrm{R}$ or $\sigma^{\prime} \Downarrow \mathrm{R}$
Example of nondeterministic contract/service:

$$
a \oplus b \Downarrow\{a\} \quad a \oplus b \Downarrow\{b\}
$$

Example of deterministic contract/service:

$$
a+b \Downarrow\{a, b\}
$$

Contracts: ready sets

$\sigma \Downarrow \mathrm{R}$: the service can be in a state where the actions in R are allowed

$$
\begin{array}{ll}
\mathbf{0} \Downarrow \emptyset & \\
\alpha \cdot \sigma \Downarrow\{\alpha\} & \\
\left(\sigma+\sigma^{\prime}\right) \Downarrow \mathrm{R} \cup \mathrm{R}^{\prime} & \text { if } \sigma \Downarrow \mathrm{R} \text { and } \sigma^{\prime} \Downarrow \mathrm{R}^{\prime} \\
\left(\sigma \oplus \sigma^{\prime}\right) \Downarrow \mathrm{R} & \text { if either } \sigma \Downarrow \mathrm{R} \text { or } \sigma^{\prime} \Downarrow \mathrm{R}
\end{array}
$$

Example of nondeterministic contract/service:

$$
a \oplus b \Downarrow\{a\} \quad a \oplus b \Downarrow\{b\}
$$

Example of deterministic contract/service:

Contracts: ready sets

$\sigma \Downarrow \mathrm{R}$: the service can be in a state where the actions in R are allowed

$$
\begin{array}{ll}
\mathbf{0} \Downarrow \emptyset & \\
\alpha \cdot \sigma \Downarrow\{\alpha\} & \\
\left(\sigma+\sigma^{\prime}\right) \Downarrow \mathrm{R} \cup \mathrm{R}^{\prime} & \text { if } \sigma \Downarrow \mathrm{R} \text { and } \sigma^{\prime} \Downarrow \mathrm{R}^{\prime} \\
\left(\sigma \oplus \sigma^{\prime}\right) \Downarrow \mathrm{R} & \text { if either } \sigma \Downarrow \mathrm{R} \text { or } \sigma^{\prime} \Downarrow \mathrm{R}
\end{array}
$$

Example of nondeterministic contract/service:

$$
a \oplus b \Downarrow\{a\} \quad a \oplus b \Downarrow\{b\}
$$

Example of deterministic contract/service:

$$
a+b \Downarrow\{a, b\}
$$

Subcontract relation

\preceq is the largest relation such that $\sigma_{1} \preceq \sigma_{2}$ implies:
(1) if $\sigma_{2} \Downarrow \mathrm{R}_{2}$ then $\sigma_{1} \Downarrow \mathrm{R}_{1}$ with $\mathrm{R}_{1} \subseteq \mathrm{R}_{2}$
(2) if $\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}$ and $\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}$ then $\sigma_{1}^{\prime} \preceq \sigma_{2}^{\prime}$
(1) σ_{2} has no more internal states than σ_{1} has:

and they all allow more capabilities than those in σ_{1} :
(2) if σ_{1} and σ_{2} share a common action, the continuations are in the subcontract relation:

Subcontract relation

\preceq is the largest relation such that $\sigma_{1} \preceq \sigma_{2}$ implies:
(1) if $\sigma_{2} \Downarrow \mathrm{R}_{2}$ then $\sigma_{1} \Downarrow \mathrm{R}_{1}$ with $\mathrm{R}_{1} \subseteq \mathrm{R}_{2}$
(2) if $\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}$ and $\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}$ then $\sigma_{1}^{\prime} \preceq \sigma_{2}^{\prime}$

Key:
(1) σ_{2} has no more internal states than σ_{1} has:

$$
a \oplus b \preceq a \quad a \oplus b \preceq b
$$

and they all allow more capabilities than those in σ_{1} :
(2) if σ_{1} and σ_{2} share a common action, the continuations are in the subcontract relation:

Subcontract relation

\preceq is the largest relation such that $\sigma_{1} \preceq \sigma_{2}$ implies:
(1) if $\sigma_{2} \Downarrow \mathrm{R}_{2}$ then $\sigma_{1} \Downarrow \mathrm{R}_{1}$ with $\mathrm{R}_{1} \subseteq \mathrm{R}_{2}$
(2) if $\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}$ and $\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}$ then $\sigma_{1}^{\prime} \preceq \sigma_{2}^{\prime}$

Key:
(1) σ_{2} has no more internal states than σ_{1} has:

$$
a \oplus b \preceq a \quad a \oplus b \preceq b
$$

and they all allow more capabilities than those in σ_{1} :

$$
a \oplus b \preceq a+b \quad a \preceq a+b
$$

(2) if σ_{1} and σ_{2} share a common action, the continuations are in the subcontract relation:

Subcontract relation

\preceq is the largest relation such that $\sigma_{1} \preceq \sigma_{2}$ implies:
(1) if $\sigma_{2} \Downarrow \mathrm{R}_{2}$ then $\sigma_{1} \Downarrow \mathrm{R}_{1}$ with $\mathrm{R}_{1} \subseteq \mathrm{R}_{2}$
(2) if $\sigma_{1} \stackrel{\alpha}{\longmapsto} \sigma_{1}^{\prime}$ and $\sigma_{2} \stackrel{\alpha}{\longmapsto} \sigma_{2}^{\prime}$ then $\sigma_{1}^{\prime} \preceq \sigma_{2}^{\prime}$

Key:
(1) σ_{2} has no more internal states than σ_{1} has:

$$
a \oplus b \preceq a \quad a \oplus b \preceq b
$$

and they all allow more capabilities than those in σ_{1} :

$$
a \oplus b \preceq a+b \quad a \preceq a+b
$$

(2) if σ_{1} and σ_{2} share a common action, the continuations are in the subcontract relation:

$$
\mathbf{0} \preceq \sigma \quad a . b \preceq a . b+c
$$

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

The dual contract of σ is defined on σ 's normal form:

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

The dual contract of σ is defined on σ 's normal form:

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

The dual contract of σ is defined on σ 's normal form:

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

$$
\begin{array}{rlrl}
a+b & \Rightarrow \bar{a} \oplus \bar{b} & \text { also } \bar{a} \ldots \\
a \oplus b & \Rightarrow \bar{a}+\bar{b} & & \\
a . b+a . c & \Rightarrow \bar{a} \cdot \bar{b} \oplus \bar{a} \cdot \bar{c} & \text { NO! }
\end{array}
$$

The dual contract of σ is defined on σ 's normal form:

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

$$
\begin{array}{rlr}
a+b & \Rightarrow \bar{a} \oplus \bar{b} & \text { also } \bar{a} . . . \\
a \oplus b & \Rightarrow \bar{a}+\bar{b} & \\
\text { a.b } b+a \cdot c & \Rightarrow \bar{a} \cdot \bar{b} \oplus \bar{a} \cdot \bar{c} & \\
a \cdot b+a \cdot c & \Rightarrow \bar{a} \cdot(\bar{b}+\bar{c}) &
\end{array}
$$

The dual contract of σ is defined on σ 's normal form:

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

$$
\begin{array}{rlr}
a+b & \Rightarrow \bar{a} \oplus \bar{b} & \text { also } \bar{a} \ldots \\
a \oplus b & \Rightarrow \bar{a}+\bar{b} & \\
\text { a.b } b+a \cdot c & \Rightarrow \bar{a} \cdot \bar{b} \oplus \bar{a} \cdot \bar{c} & \\
a \cdot b+a \cdot c & \Rightarrow \bar{a} \cdot(\bar{b}+\bar{c}) &
\end{array}
$$

The dual contract of σ is defined on σ 's normal form:

$$
\begin{aligned}
& \sigma \simeq \bigoplus_{\sigma \Downarrow \mathrm{R}} \quad \sum_{\sigma \longmapsto} \stackrel{\alpha}{\hookrightarrow} \sigma^{\prime}, \alpha \in \mathrm{R} \\
& \\
& \bar{\sigma} \cdot \sigma^{\prime} \\
& \stackrel{\text { def }}{=} \sum_{\sigma \Downarrow \mathrm{R}, \mathrm{R} \neq \emptyset} \bigoplus_{\sigma \longmapsto}{ }^{\alpha} \sigma^{\prime}, \alpha \in \mathrm{R} \\
& \bar{\alpha} \cdot \overline{\sigma^{\prime}}
\end{aligned}
$$

Client/service duality and contract compliance

If a client has contract σ, what is the "cheapest" service that interacts successfully with σ ?

$$
\begin{aligned}
a+b & \Rightarrow \bar{a} \oplus \bar{b} & \text { also } \bar{a} \ldots \\
a \oplus b & \Rightarrow \bar{a}+\bar{b} & \\
\text { a. } b+a \cdot c & \Rightarrow \bar{a} \cdot \bar{b} \oplus \bar{a} \cdot \bar{c} & \text { NO! } \\
a \cdot b+a \cdot c & \Rightarrow \bar{a} \cdot(\bar{b}+\bar{c}) &
\end{aligned}
$$

The dual contract of σ is defined on σ 's normal form:

$$
\begin{aligned}
& \sigma \simeq \bigoplus_{\sigma \Downarrow \mathrm{R}} \quad \sum_{\sigma \longmapsto} \stackrel{\alpha}{\hookrightarrow} \sigma^{\prime}, \alpha \in \mathrm{R} \\
& \\
& \bar{\sigma} \cdot \sigma^{\prime} \\
& \stackrel{\text { def }}{=} \sum_{\sigma \Downarrow \mathrm{R}, \mathrm{R} \neq \emptyset} \bigoplus_{\sigma \longmapsto}{ }^{\alpha} \sigma^{\prime}, \alpha \in \mathrm{R} \\
& \bar{\alpha} \cdot \overline{\sigma^{\prime}}
\end{aligned}
$$

Contract compliance:

$$
\sigma \ll \sigma^{\prime} \quad \stackrel{\text { def }}{=} \quad \bar{\sigma} \preceq \sigma^{\prime}
$$

Simple processes: finite CCS without choice

Syntax:

$$
P::=0 \quad|\quad a . P| \begin{array}{ll|l|l}
& \text { a. } P & P \backslash a & P \mid P
\end{array}
$$

Transition relation:

$$
\begin{aligned}
& \text { (in) } \\
& a . P \xrightarrow{a} P \quad \bar{a} . P \xrightarrow{\bar{a}} P \\
& \text { (PAR) } \\
& \frac{P \xrightarrow{\mu} Q}{P|R \xrightarrow{\mu} Q| R} \\
& \frac{\stackrel{(\mathrm{RES})}{P} \xrightarrow{P} Q \quad \mu \notin\{a, \bar{a}\}}{P \backslash a \xrightarrow{\mu} Q \backslash a} \\
& \text { (сом) } \\
& \xrightarrow[{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}]{P \stackrel{\bar{\alpha}}{\longrightarrow} Q^{\prime}}
\end{aligned}
$$

Synthesizing contracts from processes

The type system:

$$
\mathbf{0} \vdash \mathbf{0} \quad \frac{P \vdash \sigma}{\alpha . P \vdash \alpha . \sigma} \quad \frac{P \vdash \sigma}{P \backslash a \vdash \sigma \backslash a} \quad \frac{P \vdash \sigma \quad Q \vdash \sigma^{\prime}}{P|Q \vdash \sigma| \sigma^{\prime}}
$$

The \backslash meta-operator behaves like the axioms for \backslash in the aziomatization of must/testing pre-orders:

The | meta-operator is just the expansion law (in the testing equivalence):

Synthesizing contracts from processes

The type system:

$$
\mathbf{0} \vdash \mathbf{0} \quad \frac{P \vdash \sigma}{\alpha . P \vdash \alpha . \sigma} \quad \frac{P \vdash \sigma}{P \backslash a \vdash \sigma \backslash a} \quad \frac{P \vdash \sigma \quad Q \vdash \sigma^{\prime}}{P|Q \vdash \sigma| \sigma^{\prime}}
$$

The \backslash meta-operator behaves like the axioms for \backslash in the aziomatization of must/testing pre-orders:

$$
\begin{aligned}
& a \cdot \sigma \backslash a=0 \\
& b \cdot \sigma \backslash a=b \cdot(\sigma \backslash b) \quad a \neq b
\end{aligned}
$$

The | meta-operator is just the expansion law (in the testing equivalence):

Synthesizing contracts from processes

The type system:

$$
\mathbf{0} \vdash \mathbf{0} \quad \frac{P \vdash \sigma}{\alpha . P \vdash \alpha . \sigma} \quad \frac{P \vdash \sigma}{P \backslash a \vdash \sigma \backslash a} \quad \frac{P \vdash \sigma \quad Q \vdash \sigma^{\prime}}{P|Q \vdash \sigma| \sigma^{\prime}}
$$

The \backslash meta-operator behaves like the axioms for \backslash in the aziomatization of must/testing pre-orders:

$$
\begin{aligned}
& a \cdot \sigma \backslash a=0 \\
& b \cdot \sigma \backslash a=b \cdot(\sigma \backslash b) \quad a \neq b
\end{aligned}
$$

The | meta-operator is just the expansion law (in the testing equivalence):

$$
\begin{aligned}
a \mid b & =a \cdot b+b \cdot a \\
a \mid \bar{a} \cdot b & =(a \cdot \bar{a} \cdot b+\bar{a} \cdot(a \mid b)+b) \oplus b
\end{aligned}
$$

The completion property

How do we characterize a "successful interaction" of a system $P \| Q$?

System transition:

- if $Q \xrightarrow{{ }^{\top}} Q^{\prime}$ then $P\|Q \longrightarrow P\| Q^{\prime}$
- if $P \xrightarrow{\alpha} P^{\prime}$ and $Q \xrightarrow{\alpha} Q^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$

(1) $P \xrightarrow{\alpha}$, or

The completion property

How do we characterize a "successful interaction" of a system $P \| Q$?

System transition:

- if $P \xrightarrow{\tau} P^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q$;
- if $Q \xrightarrow{\tau} Q^{\prime}$ then $P\|Q \longrightarrow P\| Q^{\prime}$;
- if $P \xrightarrow{\alpha} P^{\prime}$ and $Q \xrightarrow{\bar{\alpha}} Q^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$.
P complies with Q, noted $P \ll Q$, if either
(1) $P \xrightarrow{\alpha}$, or

The completion property

How do we characterize a "successful interaction" of a system $P \| Q$?

System transition:

- if $P \xrightarrow{\tau} P^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q$;
- if $Q \xrightarrow{\tau} Q^{\prime}$ then $P\|Q \longrightarrow P\| Q^{\prime}$;
- if $P \xrightarrow{\alpha} P^{\prime}$ and $Q \xrightarrow{\bar{\alpha}} Q^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$.
P complies with Q, noted $P \ll Q$, if either
(1) $P \xrightarrow{\alpha}$, or
(2) $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$ and $P^{\prime} \ll Q^{\prime}$

The completion property

How do we characterize a "successful interaction" of a system $P \| Q$?

System transition:

- if $P \xrightarrow{\tau} P^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q$;
- if $Q \xrightarrow{\tau} Q^{\prime}$ then $P\|Q \longrightarrow P\| Q^{\prime}$;
- if $P \xrightarrow{\alpha} P^{\prime}$ and $Q \xrightarrow{\bar{\alpha}} Q^{\prime}$ then $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$.
P complies with Q, noted $P \ll Q$, if either
(1) $P \stackrel{\alpha}{\xrightarrow{Q}}$, or
(2) $P\left\|Q \longrightarrow P^{\prime}\right\| Q^{\prime}$ and $P^{\prime} \ll Q^{\prime}$

Theorem. If $P \vdash \sigma, Q \vdash \sigma^{\prime}$, and $\sigma \ll \sigma^{\prime}$ then $P \ll Q$

Open issues

- is \preceq the right compatibility relation? It is not a pre-congruence w.r.t. is good for searching, not for typing (subsumption)
- \ll is sufficient but not necessary:

$$
P \equiv x \mid \bar{x} \quad Q \equiv 0 \quad P \ll Q \quad \text { however } \quad(x \cdot \bar{x}+\bar{x} \cdot x) \oplus 0 \ll 0
$$

Is $x \mid \bar{x}$ "valid"?

- exneriment the effectiveness of contracts (PiDuce)

Open issues

- is \preceq the right compatibility relation? It is not a pre-congruence w.r.t. | \preceq is good for searching, not for typing (subsumption)
- \ll is sufficient but not necessary:

Is $x \mid \bar{x}$ "valid"?

- experiment the effectiveness of contracts (PiDuce)

Open issues

- is \preceq the right compatibility relation? It is not a pre-congruence w.r.t. |
\preceq is good for searching, not for typing (subsumption)
- \ll is sufficient but not necessary:

$$
P \equiv x \mid \bar{x} \quad Q \equiv \mathbf{0} \quad P \ll Q \quad \text { however } \quad(x \cdot \bar{x}+\bar{x} \cdot x) \oplus \mathbf{0} \ll \mathbf{0}
$$

Is $x \mid \bar{x}$ "valid"?

- experiment the effectiveness of contracts (PiDuce)

Open issues

- is \preceq the right compatibility relation? It is not a pre-congruence w.r.t. |
\preceq is good for searching, not for typing (subsumption)
- \ll is sufficient but not necessary:

$$
P \equiv x \mid \bar{x} \quad Q \equiv \mathbf{0} \quad P \ll Q \quad \text { however } \quad(x \cdot \bar{x}+\bar{x} \cdot x) \oplus \mathbf{0} \ll \mathbf{0}
$$

Is $x \mid \bar{x}$ "valid"?

- experiment the effectiveness of contracts (PiDuce)

Future work

- Recursive contracts

$$
\mu x . \sigma
$$

How do we infer contracts from processes? Syntactic restrictions over processes or regular approximations?

- Name passing:

- Adapting \preceq to asynchronous communication
- Relationshin with linear Iogic and set-theoretic interpretation of contracts
- Contract isomorphisms and automatic generation of adapters:

Future work

- Recursive contracts

$$
\mu x . \sigma
$$

How do we infer contracts from processes? Syntactic restrictions over processes or regular approximations?

- Name passing:

$$
a(x) \cdot \bar{x}
$$

- Adapting \preceq to asynchronous communication
- Relationshin with linear logic and set-theoretic interpretation of
contracts
- Contract isomorphisms and automatic generation of adapters:

Future work

- Recursive contracts

$$
\mu x . \sigma
$$

How do we infer contracts from processes? Syntactic restrictions over processes or regular approximations?

- Name passing:

$$
a(x) \cdot \bar{x}
$$

- Adapting \preceq to asynchronous communication
- Relationship with linear logic and set-theoretic interpretation of contracts
- Contract isomorphisms and automatic generation of adapters:

Future work

- Recursive contracts

$$
\mu x . \sigma
$$

How do we infer contracts from processes? Syntactic restrictions over processes or regular approximations?

- Name passing:

$$
a(x) \cdot \bar{x}
$$

- Adapting \preceq to asynchronous communication
- Relationship with linear logic and set-theoretic interpretation of contracts
- Contract isomorphisms and automatic generation of adapters:

Future work

- Recursive contracts

$$
\mu x . \sigma
$$

How do we infer contracts from processes? Syntactic restrictions over processes or regular approximations?

- Name passing:

$$
a(x) \cdot \bar{x}
$$

- Adapting \preceq to asynchronous communication
- Relationship with linear logic and set-theoretic interpretation of contracts
- Contract isomorphisms and automatic generation of adapters:

$$
a \cdot b \Longleftrightarrow b . a
$$

