
PiDuce
http://www.cs.unibo.it/PiDuce/

Samuele Carpineti, Cosimo Laneve, Leonardo Mezzina, Luca Padovani

20 december 2005

(Luca Padovani) PiDuce 20 december 2005 1 / 33

Summary

Web Services

Web Services in PiDuce

Implementing PiDuce

Orchestrators

Pitfalls of PiDuce’s type system

(Luca Padovani) PiDuce 20 december 2005 2 / 33

What is a Web service?

“A Web Service is any resource that can be found at a URL (Uniform
Resource Locator)”

idea of passive resource

the resource is readable by the user by means of a User Agent
(Web à la CERN)

This definition has been extended in many ways. . .

active/dynamic documents

query/response Web services (Google, Amazon, . . .)

sessions

. . . still what if we were to build a Web service using another one?
Screen scraping is unreliable, not scalable, fragile, . . .

Technologies are needed for making Web services understandable by
machines as well as humans

(Luca Padovani) PiDuce 20 december 2005 3 / 33

Making machines talk to each other

Data must be dealt with in a platform-neutral way
I data representation
I data validation

Services must be advertised in a machine-understandable way

Services and clients must be described in a language that fits with the
context

I communication
I concurrency
I synchronization
I data construction/deconstruction

(Luca Padovani) PiDuce 20 december 2005 4 / 33

Describing data and grammars

XML (eXtensible Markup Language) is the lingua franca for
inter-platform communication of semi-structured data

<a>

123

<c/>

there exist several schema languages for defining a notion of
“document valid with respect to a grammar”

I DTDs (Document Type Definitions) based on CFG
I XML-Schema, based on CFG with extensions/restrictions
I Relax-NG based on regular expressions

<element name="a">

<element name="b" type="integer"/>

<element name="c" minOccurs="0" maxOccurs="1"/>

</element>

(Luca Padovani) PiDuce 20 december 2005 5 / 33

Describing programs

the π-calculus is a simple, platform-independent formalism for
modeling distributed systems

it has primitives for asynchronous communication over named
channels

no commitment is made to any specific programming language, the
formalism can be seen as a target language into which interesting and
relevant constructs are compiled

it permits formal investigation and analysis, it is reasonably
implementable

PiDuce = XML + π-calculus

(Luca Padovani) PiDuce 20 december 2005 6 / 33

(Luca Padovani) PiDuce 20 december 2005 7 / 33

http://terraservice.net/TerraService2.asmx?WSDL

<wsdl:definitions>

<wsdl:types> ... </wsdl:types>

<wsdl:message name="GetTileSoapIn">

<wsdl:part name="parameters" element="tns:GetTile" />

</wsdl:message>

<wsdl:message name="GetTileSoapOut">

<wsdl:part name="parameters" element="tns:GetTileResponse" />

</wsdl:message>

<wsdl:portType name="TerraServiceSoap">

...

<wsdl:operation name="GetTile">

<wsdl:input message="tns:GetTileSoapIn" />

<wsdl:output message="tns:GetTileSoapOut" />

</wsdl:operation>

</wsdl:portType>

...

</wsdl:definitions>

(Luca Padovani) PiDuce 20 december 2005 8 / 33

http://terraservice.net/TerraService2.asmx?WSDL

<wsdl:definitions>

...

<wsdl:binding name="TerraServiceSoap" type="tns:TerraServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<wsdl:operation name="GetTile">

<soap:operation soapAction="http://terraservice-usa.com/GetTile"

style="document" />

<wsdl:input> <soap:body use="literal" /> </wsdl:input>

<wsdl:output> <soap:body use="literal" /> </wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="TerraService">

<wsdl:port name="TerraServiceSoap" binding="tns:TerraServiceSoap">

<soap:address location="http://terraservice.net/TerraService2.asmx"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

(Luca Padovani) PiDuce 20 december 2005 9 / 33

A simple PiDuce Web service

With no schema annotations:

new add location="add" in

add?*(a, b, res).

res!(a + b)

The same PiDuce program annotated with schema information:

new add : <x[int], y[int], <int>> location="add" in

add?*(x[a : int], y[b : int], res : <int>).

res!(a + b)

<. . . > denotes a service type

(Luca Padovani) PiDuce 20 december 2005 10 / 33

A simple PiDuce client

new stdout : <any> location="stdout" in

import add : <x[int], y[int], <int>>

wsdl="http://localhost:1811/add?wsdl" in

new res : <int> in

spawn { add!(x[5], y[4], res) }

res?(n : int).

stdout!(n)

Note the difference between x?(u).P and x?∗(u).P

There is a mismatch between the published WSDL (synchronous service)
and the process (asynchronous service)

(Luca Padovani) PiDuce 20 december 2005 11 / 33

First-class Web services

WSDL 1.0 and schema languages don’t deal with first-class Web
services, whereas π-calculus is based on name-passing, so if

service = π-calculus channel

we can model first-class Web services naturally!

Does it make any sense to talk about first-class Web services?
I service replication
I load balancing
I fault tolerance
I dynamic service composition
I . . .

So what does it mean to communicate a Web service? Is it like
sending a URL? The URL of what?

(Luca Padovani) PiDuce 20 december 2005 12 / 33

PiDuce architecture

In PiDuce

processes and channels are static, they stay where they have been
created

messages travel across the network

It seems pretty obvious but. . .

it is not the only possibility (mobile agents, mobile code)

it leaves “what does it mean to communicate a Web service?”
unanswered

it poses nontrivial issues in the implementation of the π-calculus
(input capability)

(Luca Padovani) PiDuce 20 december 2005 13 / 33

PiDuce architecture

!

?

<?xml version="1.0"?>

 ...

<PiDuce>
 <schemadecl>

 </schemadecl>
 <process>
 ...

 </process>
</PiDuce>

Ready/Block

Fork

Send

Lforward

New

Ready/Kill

R
u
n

L
o
a
d

AcceptMessage

AcceptLforward

AcceptNew

po
ol

 o
f a

sy
nc

hr
on

ou
s

th
re

ad
s

ha
nd

lin
g

ne
tw

or
k

I/O

marshalling

unmarshalling

GetSchema

Send

Select

New

ch
an

ne
l w

ith
 p

en
di

ng
 m

es
sa

ge
s

ch
an

ne
l w

ith
 p

en
di

ng
 in

pu
t r

eq
ue

st
s

Lforward

Export

Import

New

Send

Send

VIRTUAL MACHINE CHANNEL MANAGER WEB INTERFACE

TYPE−SAFE RUNTIME ENVIRONMENT

Replication

environment

PC
code

ready queue

environment

PC
code

blocked queue

program pool

co
nf

or
m

an
ce

 c
he

ck
(Luca Padovani) PiDuce 20 december 2005 14 / 33

Virtual machine

the virtual machine is intrinsically concurrent, threads in the virtual
machine implement PiDuce processes

its main data structures are
I program pool
I ready queue
I blocked queue

I/O operations are redirected to the channel manager (if the
operation involves a local channel) or to the Web interface (if the
operation involves a remote channel)

the Load operation adds a program to the program pool and
schedules its main thread for execution

(Luca Padovani) PiDuce 20 december 2005 15 / 33

Channel Manager

the channel manager handles local channels

each channel consists of
I a queue of messages
I a queue of input requests

operations are provided for creating new channels, sending and
receiving messages

(Luca Padovani) PiDuce 20 december 2005 16 / 33

Web Interface

The Web interface advertises any locally defined service defined to the
world using standard technologies (interoperability)

Publishing: each channel is published in its own WSDL, PiDuce schemas
are translated into XML schema

Translation: outgoing PiDuce messages are marshalled into XML
documents, incoming XML documents are unmarshalled into
PiDuce messages

Immigration: any incoming message/request is checked to make sure it
conforms with the local schemas

Communicating a Web service means making its description (WSDL)
public and sending a reference (URL) to it

(Luca Padovani) PiDuce 20 december 2005 17 / 33

Modularity for flexibility

!

?

<?xml version="1.0"?>

 ...

<PiDuce>
 <schemadecl>

 </schemadecl>
 <process>
 ...

 </process>
</PiDuce>

Ready/Block

Fork

Send

Lforward

New

Ready/Kill

R
u
n

L
o
a
d

AcceptMessage

AcceptLforward

AcceptNew

po
ol

 o
f a

sy
nc

hr
on

ou
s

th
re

ad
s

ha
nd

lin
g

ne
tw

or
k

I/O

marshalling

unmarshalling

GetSchema

Send

Select

New

ch
an

ne
l w

ith
 p

en
di

ng
 m

es
sa

ge
s

ch
an

ne
l w

ith
 p

en
di

ng
 in

pu
t r

eq
ue

st
s

Lforward

Export

Import

New

Send

Send

VIRTUAL MACHINE CHANNEL MANAGER WEB INTERFACE

TYPE−SAFE RUNTIME ENVIRONMENT

Replication

environment

PC
code

ready queue

environment

PC
code

blocked queue

program pool

co
nf

or
m

an
ce

 c
he

ck

the channel manager and the Web interface can be used as libraries
from native programs

as the Web interface becomes obsolete (technology evolves) it can be
easily replaced

the virtual machine and the channel manager are type-safe. Nothing
wrong can happen once in the red zone

(Luca Padovani) PiDuce 20 december 2005 18 / 33

Implementing output

Consider
x!(u)

and assume that u is the name of a local channel (service)

If x is local it is sufficient to contact the local channel manager

If x is remote
1 the local Web interface publishes u making its WSDL available at a

given URL (note that the WSDL includes the schema of u)
2 what is sent to x is the URL of the WSDL associated with u. If the

receiver needs the schema of u, that can be retrieved from u’s WSDL
3 the remote Web interface downloads the type of u from its WSDL and

checks that it is “compatible” with x ’s type
4 u is locally delivered in x ’s message queue

(Luca Padovani) PiDuce 20 december 2005 19 / 33

Implementing input

Consider
x?(u).P

easy if x is local! An input request is enqueued in x ’s request queue,
P is blocked until a message arrives on x

what if x is a remote channel?

x!(u) | x?(v).P → P{v/u}

Note that remote input cannot be detected statically:

x?(u).u?(w).P

Even if x is local, who knows where u is coming from. . .

(Luca Padovani) PiDuce 20 december 2005 20 / 33

Linear forwarding

We rewrite
x?(u).P

into
new y in

spawn{ x?(v).y !(v) }
y?(u).P

Now y(u).P is a local input operation. What is the upshot?

x?(v).y !(v) is a linear forwarder x (y

x (y is a small process with finite behavior which can migrate to x ’s
location and execute remotely

(Luca Padovani) PiDuce 20 december 2005 21 / 33

Synchronization

Assume we have three parallel activities A, B, and C and we want to
execute P or Q depending on whoever finishes first between both A and B
and both B and C

A = . . . a!()
B = . . . b!()
C = . . . c!()

a?().b?().P b?().c?().Q

this encoding is not correct: if B completes then A completes and C
never completes we have a deadlock!

rewriting doesn’t always help, competing processes are not always
known at compile time

we need a way of expressing an atomic input from multiple channels:

join{ a?() & b?() . P + b?() & c?() . Q }

(see Petri nets)

(Luca Padovani) PiDuce 20 december 2005 22 / 33

Example: lock

Lock definition:

new mutex, lock, unlock in

spawn{ mutex!() }
join∗{

mutex?() & lock?(r) . r !()
+ unlock?() . mutex!()

}

Lock usage:
new r in

spawn{ lock!(r) }
r?().P

where P does
spawn{ unlock!() }

when it’s done using the critical section

(Luca Padovani) PiDuce 20 december 2005 23 / 33

Example: one-place buffer

Buffer definition:

new empty, full, put, get in

spawn{ empty!() }
join∗{

empty?() & put?(v) . full!(v)
+ full?(v) & get?(r) . spawn{ empty!() } r !(v)

}

(see Objective Join Calculus)

(Luca Padovani) PiDuce 20 december 2005 24 / 33

Implementing joined channels

Same problems as for simple input operations, same solution?
What if

join{ x?(u) & y?(v) . P }

is encoded into
new x ′, y ′ in
spawn{ x (x ′ }
spawn{ y (y ′ }
join{ x ′?(u) & y ′?(v) . P }

?
It doesn’t work and that’s no surprise (distributed consensus). Bummer!

(Luca Padovani) PiDuce 20 december 2005 25 / 33

Smooth orchestration

We generalize linear forwarders into smooth orchestrators

The process
join{ x?(u) & y?(v) . P }

is encoded into

new z in

spawn{ join{ x?(u) & y?(v) . z!(u, v) } }
z?(u, v).P

where join{ x?(u) & y?(v) . z!(u, v) } is a smooth orchestrator that
migrates to x ’s and y ’s location

Beware: x and y must be co-located!

(Luca Padovani) PiDuce 20 december 2005 26 / 33

Example: supplier/manufacturer/bank interaction

Supplier definition:

buy?(item, x).
new voucher@item in

spawn{ x!(voucher, amount) }
join∗{
voucher?(u) & item?(v) .
spawn{ deliver!(u, v) }
record!(u, v)

}

(Luca Padovani) PiDuce 20 december 2005 27 / 33

PiDuce schemas and type-checking

Assume we have a Web service x converting inches, picas and points into
centimeters. It would accept messages belonging to the schema

in[int] + pc[int] + pt[int]

Assume we have a message m that we know being either an in or a pt

element. It would belong to the schema

in[int] + pt[int]

What about x!(m)? It is well-typed, because

in[int] + pt[int] <: in[int] + pc[int] + pt[int]

<: is the subschema relation (similar to OO subtyping)

(Luca Padovani) PiDuce 20 december 2005 28 / 33

Channel schemas

Since channels (services) are first-class objects, they must have a schema
too!

〈S〉κ

is the schema of channels carrying data of type S and κ is the channel
capability:

I input capability

O output capability

IO input/output capability

What about the subschema relation with channel types? When is it safe to
use a channel of type 〈S〉κ when one of type 〈T 〉κ′

is expected?

(Luca Padovani) PiDuce 20 december 2005 29 / 33

Channel schemas and subschema relation

Assume
x : 〈〈T 〉I〉 u : 〈S〉I

When is x!(u) well-typed?
Whoever receives u will think that it has type 〈T 〉I, so is prepared to
received data of type T from u
Co-variance:

〈S〉I <:〈T 〉I ⇐⇒ S <:T

Assume
x : 〈〈T 〉O〉 u : 〈S〉O

When is x!(u) well-typed?
Whoever receives u will think that it has type 〈T 〉I, so is authorized to
send data of type T on u
Contra-variance:

〈S〉O <:〈T 〉O ⇐⇒ T <: S

(Luca Padovani) PiDuce 20 december 2005 30 / 33

Complexity matters

Why all this fuss about schemas?
During immigration the Web interface has to check whether incoming
messages conforms with the local schemas

checking that a plain XML document (without channel values) x
belongs to a schema S can be done in linear time (w.r.t. x ’s size)

checking that a channel u belongs to a schema 〈T 〉 entails computing
the subschema relation

How hard is it to compute the subschema relation?

(Luca Padovani) PiDuce 20 december 2005 31 / 33

The subschema relation is exponential

The hard case is the sequence

L[S], L′[S ′] <:
∑
i∈I

Li [Ti], L
′
i [T

′
i]

One can prove that

A× B ⊆
⋃
i∈I

Ci × Di ⇐⇒ ∀J ⊆ I : A ⊆
⋃
j∈J

Ci ∨ B ⊆
⋃

j∈I\J

Di

The label-determinedness condition enforces that

i 6= j ⇒ Li ∩ Lj = ∅ (Ci ∩ Cj = ∅)

Under this condition, the subschema relation is polynomial

(Luca Padovani) PiDuce 20 december 2005 32 / 33

Bibliography

http://www.cs.unibo.it/PiDuce/

A. Brown, C. Laneve, G. Meredith, “PiDuce: a process calculus with
native XML datatypes”, in Proceedings of WS-FM’05

C. Laneve, L. Padovani, “Smooth Orchestrators”, in Proceedings of
FOSSACS’06

C. Laneve, S. Carpineti, “A basic contract language for Web
services”, in Proceedings of ESOP’06

(Luca Padovani) PiDuce 20 december 2005 33 / 33

http://www.cs.unibo.it/PiDuce/

	Web Services
	Web Services in PiDuce
	Implementing PiDuce
	Orchestrators
	Pitfalls of the type system

