Deadlock and lock freedom
In the linear m-calculus

Luca Padovani
(with contributions from Tzu-Chun Chen, Luca Novara, Andrea Tosatto)

Dipartimento di Informatica — Universita di Torino

1/24

Demo

2/24

Demo

copy J=

out

3/24

Stages

@ linearity analysis
= partition channels into linear and non-linear

@® protocol analysis (optional)
= infer communication structure

© deadlock analysis
= no pending communications in stable states

® lock analysis
= pending communications in all states can be completed

4/ 24

Why the focus on linear channels?

® Kahn process networks [Kahn '74]
® ~ 50% channels are linear [Kobayashi, Pierce, Turner '99]
L4 binary sessions [Kobayashi '07, Demangeon and Honda '11, Dardha et al. '12]
® multiparty sessions [Padovani '13, Pérez et al. '14]

5/ 24

Outline

@® Linearity analysis

6/ 24

Linearity analysis: how it works

L

newain{ a!3 | a?x }

7/ 24

Linearity analysis: how it works

L

® g =01+ Qo

o] = O'l[il’lt]
newain{ a!3 | a?x }

ap ="*[int] a, = "O[int]

type combination # unification

7/ 24

Linearity analysis: how it works

L

® g =01+ Qo

e 7P[int] = %[int] + 1O[int]

o] = O'l[il’lt]
newain{ a!3 | a?x }

ap = "?[int] a, = "[int]

type combination # unification

7/ 24

Linearity analysis: how it works

L

Qg =0+ o

PPlint] = '[int] + *O[int]
p=0+1

p=1+4+0

o] = O'l[il’lt]
newain{ a!3 | a?x }

ap = "?[int] a, = "[int]

type combination # unification

7/ 24

Linearity analysis: how it works

L

Qo = 01 + Qo

PPlint] = '[int] + *O[int]
p=0+1

p=1+4+0

ag = [int]

o] = O'l[il’lt]
newain{ a!3 | a?x }

ap = "?[int] a, = "°[int]

type combination # unification

7/ 24

Demo: trees

*case take? of
{ Leaf = {}
; Node(c,l,r) = c!0 | take!l | skip!r }

*case skip? of
{ Leaf = {}
; Node(_,1l,r) = skip!l | take!r }

take!t | skip!t

8/ 24

Channels used by take (red) and skip (blue)

9/24

Channels used by take (red) and skip (blue)

9 /24

Channels used by take (red) and skip (blue)

9 /24

Outline

© Protocol analysis

10 / 24

s?(x).s!t(x+1)

binary
sessions

session
types

?int.!int ...

linear
m-calculus

linear
channel
types

11/ 24

s?7(x).s!(x+1) s?(x,s").new s” in s'1(x+1,5")

binary encoding . linear
. 7
sessions m-calculus
_ encoding linear
session % channel
types types
?int.!int ... 1'O[int % Oyl[int x -]

11/ 24

s?(x).s!t(x+1)

s?(x,s')new s” in s'1(x +1,5")

binary encoding linear
sessions m-calculus
reconstruction
_ encoding linear
session % channel
types types
?int.!int ... 1'O[int % Oyl[int x -]

11/ 24

s?7(x).s!(x+1) s?(x,s')new s” in s'1(x +1,5")

binary encoding linear
. 7
sessions m-calculus

reconstruction

_ encoding linear
session < , » channel
decoding
types types
?int.!int... LOlint x O!int x ---]]

11/ 24

Demo: math server

*server?s.
case s?7 of
{ Quit = {}
; Plus ¢l = c17(x,c2).
c2?(y,c3).
new c4 in { c3!(x
; EQ c1 = c17(x:Int,c2).
c2?(y,c3).
new c4 in { c3!(x
; Neg c1 = c17(x,c2).
new c3 in { c2!(0

+

y, c4) | server!cd }

y, c4) | server!cd }

x, c3) | server!c3 } }

12/ 24

Outline

O Deadlock analysis

13 /24

Different processes, same typing

arx.b'x | al3.b7y

14 / 24

Different processes, same typing

a:M[int],b: "![int] F a?x.b!x | a!3.b7y

14 / 24

Different processes, same typing

a:Mint],b: "![int] F a?x.b!x | a!3.b7y

a7x.b'x | b7y.a!3

14 / 24

Different processes, same typing

a:Mint],b: "![int] F a?x.b!x | a!3.b7y

a:''[int],b: "![int] F a?x.b!x | b7y.a!3

14 / 24

Basic strategy for deadlock analysis

@ assign each linear channel a level € Z

K'LKQ[t]h

@® make sure that channels are used in strict order

a ?x.b'x| bz7ry.a '3

15 / 24

Basic strategy for deadlock analysis

@ assign each linear channel a level € Z

K'LKQ[t]h

@® make sure that channels are used in strict order

amex.b"'x | b"?y.a"3

15 / 24

Basic strategy for deadlock analysis

@ assign each linear channel a level € Z

Kl,KQ[t]h

@® make sure that channels are used in strict order

< <
—~ —~
amex.b"'x | b"?y.a"13

15 / 24

A problem with recursive processes

*1ink?(x ,y).
x 7(z,a). -— X blocks y and a
new b in y !(z,b). -- y blocks a and b
link!(a ,b)

16 / 24

A problem with recursive processes

*1ink? (x%,y1) .
x'?(z,a). -- X blocks y and a
new b in y'!(z,b). -- y blocks a and b
link!(a ,b)

16 / 24

A problem with recursive processes

*1ink? (x%,y1) .
x'?(z,a%). -- X blocks y and a
new b in y'!(z,b). -- y blocks a and b
link!(a’,b)

16 / 24

A problem with recursive processes

*1ink? (x%,y1) .
x'?(z,a%). -- X blocks y and a
new b> in y'!(z,b%). -- y blocks a and b
link!(a’,b’)

16 / 24

A problem with recursive processes

*1ink? (x%,y1) .

x'?(z,a%). -- X blocks y and a
new b> in y'!(z,b%). -- y blocks a and b
link! (a”,b%)

Problem
© the levels of a and b don’t match those of x and y

® type error

16 / 24

A problem with recursive processes

*1ink? (x%,y1) .
x'?(z,a%). -- X blocks y and a
new b> in y'!(z,b%). -- y blocks a and b

link! (a®,b>)

Problem
© the levels of a and b don’t match those of x and y

® type error

Solution
© the mismatch is OK as long as it is a translation

@ allow level polymorphism

16 / 24

Type reconstruction: how it works

*1ink?(x ,y).

x 7(z,a). ——
new b in y !'(z,b). —-=
link!(a ,b) -

® perform linearity analysis

17 / 24

Type reconstruction: how it works

*1ink? (x",y").

x"?(z,a") . -
new b in y"1(z,b"). --
link! (a",b") —

@ perform linearity analysis
@® put integer variables in place of (unknown) levels

17 / 24

Type reconstruction: how it works

*1ink? (x",y").

x"?(z,a") . -——n<mAn<h
new b in y"1(z,b"). --

link! (a",b") -

@ perform linearity analysis
@® put integer variables in place of (unknown) levels
© compute constraints

17 / 24

Type reconstruction: how it works

*1ink? (x",y").

x"?(z,a") . -——n<mAn<h
new b* in y”!(z,b"). - m<hAm<k
link! (a",b") -

@ perform linearity analysis
@® put integer variables in place of (unknown) levels
© compute constraints

17 / 24

Type reconstruction: how it works

*1ink? (x",y").

x"?(z,a") . -——n<mAn<h
new b* in y”!(z,b"). - m<hAm<k
link! (a",b") ~—— h=n+tAk=m+t

@ perform linearity analysis
@® put integer variables in place of (unknown) levels
© compute constraints

17 / 24

Type reconstruction: how it works

*1ink? (x",y").

x"?(z,a") . -——n<mAn<h
new b* in y”!(z,b"). - m<hAm<k
link! (a",b") ~—— h=n+tAk=m+t

@ perform linearity analysis

@® put integer variables in place of (unknown) levels
© compute constraints

O use ILP solver

17 / 24

Outline

© Lock analysis

18 / 24

Deadlocks vs locks

O1[int]"
newain{ a!3 | cla| *xc?x.c!x }

1’1[int]” l’o[int]"

19/ 24

Strategy for lock analysis

@ assign each linear channel a finite number k € N of tickets

2]

@ cach time a channel travels, one ticket is consumed

© channels with no tickets cannot travel

20 / 24

Lock analysis and type reconstruction

*1ink? (x",y%) .
x?2(z,a?%).
new b> in y'!(z,b%).
link! (a®,b%)

® perform linearity analysis

@® put natural variables in place of (unknown) levels and tickets
©® compute constraints

O use ILP solver

21 /24

Lock analysis and type reconstruction

*1ink? (x,y3) .
x)7(z,a%) .

3 .o 1 3
new b’ in y,!(z,b”).
link!(a’,b%)

® perform linearity analysis

@® put natural variables in place of (unknown) levels and tickets
©® compute constraints

O use ILP solver

21 /24

Lock analysis and type reconstruction

*1ink? (x,y3) .
x)7(z,a3) .
3 .o 1 3
new b’ in y,!(z,b”).
link! (a?,b’)

® perform linearity analysis

@® put natural variables in place of (unknown) levels and tickets
©® compute constraints

O use ILP solver

21 /24

Lock analysis and type reconstruction

*1ink? (x,y3) .
x97(z,a7) .
new by in yg!(z,b3).
link! (aj,b})

® perform linearity analysis

@® put natural variables in place of (unknown) levels and tickets
©® compute constraints

O use ILP solver

21 /24

Outline

® Final remarks

22 / 24

Related work

No levels

® sessions

® session types as linear logic propositions
Discrete levels

e Kobayashi [2002, 2006, ...]

® Bettini et al. [2008]

e Padovani, Vasconcelos, Vieira [2014]

° .
Dense levels

® Giachino, Kobayashi, Laneve [2014]

(without interleaving)

23 / 24

Summary of products

[l

Padovani, Deadlock and Lock Freedom in the Linear m-Calculus
(LICS'14)

Padovani, Type Reconstruction for the Linear m-Calculus with
Composite and Equi-Recursive Types (FoSSaCs'14)

Padovani, Chen, Tosatto, Type Reconstruction Algorithms for
Deadlock-Free and Lock-Free Linear 7-Calculi (submitted)

Padovani and Novara, Types and Effects for Deadlock-Free
Higher-Order Programs (submitted)

Padovani and Tosatto, Hypha
(available at http://di.unito.it/hypha)

24 / 24

http://di.unito.it/hypha

	Introduction
	Linearity analysis
	Protocol analysis
	Deadlock analysis
	Lock analysis
	Final remarks

