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Stages

@ linearity analysis
= partition channels into linear and non-linear

@® protocol analysis (optional)
= infer communication structure

© deadlock analysis
= no pending communications in stable states

® lock analysis
= pending communications in all states can be completed
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Why the focus on linear channels?

® Kahn process networks [Kahn '74]
® ~ 50% channels are linear [Kobayashi, Pierce, Turner '99]
L4 binary sessions [Kobayashi '07, Demangeon and Honda '11, Dardha et al. '12]
® multiparty sessions [Padovani '13, Pérez et al. '14]
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Outline

@® Linearity analysis
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Linearity analysis: how it works

L

newain{ a!3 | a?x }
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Demo: trees

*case take? of
{ Leaf = {}
; Node(c,l,r) = c!0 | take!l | skip!r }

*case skip? of
{ Leaf = {}
; Node(_,1l,r) = skip!l | take!r }

take!t | skip!t
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Channels used by take (red) and skip (blue)
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Outline

© Protocol analysis
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Demo: math server

*server?s.
case s?7 of
{ Quit = {}
; Plus ¢l = c17(x,c2).
c2?(y,c3).
new c4 in { c3!(x
; EQ c1 = c17(x:Int,c2).
c2?(y,c3).
new c4 in { c3!(x
; Neg c1 = c17(x,c2).
new c3 in { c2!(0

+

y, c4) | server!cd }

y, c4) | server!cd }

x, c3) | server!c3 } }
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Outline

O Deadlock analysis
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Different processes, same typing

arx.b'x | al3.b7y
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Basic strategy for deadlock analysis

@ assign each linear channel a level € Z

K'LKQ[t]h

@® make sure that channels are used in strict order

a ?x.b'x| bz7ry.a '3
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A problem with recursive processes

*1ink?(x ,y ).
x 7(z,a ). -— X blocks y and a
new b in y !(z,b ). -- y blocks a and b
link!(a ,b )
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A problem with recursive processes
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A problem with recursive processes

*1ink? (x%,y1) .
x'?(z,a%). -- X blocks y and a
new b> in y'!(z,b%). -- y blocks a and b

link! (a®,b>)

Problem
© the levels of a and b don’t match those of x and y

® type error

Solution
© the mismatch is OK as long as it is a translation

@ allow level polymorphism
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Type reconstruction: how it works

*1ink?(x ,y ).
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@ perform linearity analysis
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O use ILP solver
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Outline

© Lock analysis
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Deadlocks vs locks

O1[int]"
newain{ a!3 | cla| *xc?x.c!x }

1’1[int]” l’o[int]"
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Strategy for lock analysis

@ assign each linear channel a finite number k € N of tickets

2]

@ cach time a channel travels, one ticket is consumed

© channels with no tickets cannot travel
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Lock analysis and type reconstruction

*1ink? (x",y%) .
x?2(z,a?%).
new b> in y'!(z,b%).
link! (a®,b%)

® perform linearity analysis

@® put natural variables in place of (unknown) levels and tickets
©® compute constraints

O use ILP solver
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Lock analysis and type reconstruction

*1ink? (x,y3) .
x97(z,a7) .
new by in yg!(z,b3).
link! (aj,b})
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Outline

® Final remarks
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Related work

No levels

® sessions

® session types as linear logic propositions
Discrete levels

e Kobayashi [2002, 2006, ... ]

® Bettini et al. [2008]

e Padovani, Vasconcelos, Vieira [2014]

° .
Dense levels

® Giachino, Kobayashi, Laneve [2014]

(without interleaving)
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Summary of products

[l

Padovani, Deadlock and Lock Freedom in the Linear m-Calculus
(LICS'14)

Padovani, Type Reconstruction for the Linear m-Calculus with
Composite and Equi-Recursive Types (FoSSaCs'14)

Padovani, Chen, Tosatto, Type Reconstruction Algorithms for
Deadlock-Free and Lock-Free Linear 7-Calculi (submitted)

Padovani and Novara, Types and Effects for Deadlock-Free
Higher-Order Programs (submitted)

Padovani and Tosatto, Hypha
(available at http://di.unito.it/hypha)
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