
Deadlock-Free Typestate-Oriented Programming

Luca Padovani

University of Torino, Italy



outline

Introduction to TypeState-Oriented Programming

From sequential to concurrent TSOP

A model for concurrent TSOP

Preventing deadlocks

Conclusions

1/17



Introduction to TypeState-Oriented
Programming



2/17



from types to typestate [Strom and Yemini, 1986]

3/17



typestate for objects [DeLine and Fähndrich, 2004]

• File (cannot read if closed)

• TCP socket (cannot send if disconnected)

• Stack (cannot pop if empty)

• Bounded bu�er (cannot put if full)

• . . .

“. . . approximately 7.2% of all types defined protocols, while
13% of classes were clients of types defining protocols.”

[Beckman et al., 2011]

4/17



typestate-oriented programming [Aldrich et al., 2009]

class Buffer { }

state Empty of Buffer {
public void put(int x) { [Empty >> Full]
this ← Full { this.value = x; }

} }

state Full of Buffer {
private int value;
public int get() { [Full >> Empty]
int v = this.value;
this ← Empty {}
return v;

} }
5/17



typestate-oriented programming: wrap-up

Key mechanisms

• pairing types with states Empty, Full

• decorating methods with state transitions Empty >> Full

• controlling object aliasing linearity

Well-typed programs “don’t go wrong”

• no unavailable method is ever invoked on any object

• well-typed programs either reduce or successfully terminate

6/17



From sequential to concurrent TSOP



a concurrent bu�er

producer bu�er consumer
Put

Get

Reply

Remarks

• producer doesn’t know when the bu�er is empty
• consumer doesn’t know when the bu�er is full

Consequences

• pointless to require an order on the invocations of Get/Put
• an invocation of Get/Put may suspend the caller
• sensible to require that there’s the same number of Get/Put

7/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get

,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get ,
• buffer!Get

,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get ,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43)

,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get ,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get)

/

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get ,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get ,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all

8/17



A model for concurrent TSOP



the chemical abstract machine [Berry and Boudol, 1992]

C2 B A2

A & B & C . D & E

state change =
chemical reaction

initial state

9/17



the chemical abstract machine [Berry and Boudol, 1992]


C2 B A2 A B C A C

A & B & C . D & E

state change =
chemical reaction

initial state

9/17



the chemical abstract machine [Berry and Boudol, 1992]


 →C2 B A2 A B C A C D E A C

A & B & C . D & E

state change =
chemical reaction

initial state new state

9/17



the Objective Join Calculus [Fournet et al., 2003]

new buffer =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(u) . buffer!EMPTY() & u!Reply(x)

A natural model for concurrent TSOP [Crafa and Padovani, 2017]

• concurrent objects

• patterns⇒ pairing of states and operations

• patterns⇒ synchronization

10/17



Preventing deadlocks



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

11/17



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

CLOSURE

11/17



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

CLOSURE Reply

11/17



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

EMPTY

11/17



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

EMPTY

Put

11/17



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)

EMPTY

Put Get

11/17



strategy

Definition (object dependency)
A dependency between u and v is established if v is the argument
of a message targeted to u (or vice versa)

Type system

1. enforce protocol conformance

2. track dependencies between objects

3. make sure the dependency graph is acyclic

12/17



a glimpse at some typing rules

A typing judgment Γ ` P • D reads as:

• process P conforms with the types (Γ) of the objects it uses

• and establishes the dependencies D among such objects

where

• Γ maps object names to types

• D is an irreflexive dependency relation

[t-send]

u : m(t), v : t ` u!m(v) • u ∼ v

13/17



parallel composition

[t-par]

Γ1 ` P1 • D1 Γ2 ` P2 • D2

Γ1 · Γ2 ` P1 &P2 • (D1 ∪D2)+
D1 ∩D2 = ∅
(D1 ∪D2)+ irreflexive

Motivating examples

user!CLOSURE(buffer) & buffer!Get(user)

a!M(b) & b!M(c) & c!M(a)

14/17



reactions and classes

[t-reaction]

x : t ` J x : t ` P • D
` J B P

Remarks

• dependencies are confined within classes

• classes can be type checked independently

15/17



reactions and classes

[t-reaction]

x : t ` J x : t ` P • D
` J B P

not in the conclusion

Remarks

• dependencies are confined within classes

• classes can be type checked independently

15/17



properties of well-typed processes

Theorem
If ∅ ` P • D, then:

1. P is protocol conformant, and
2. either P reduces (to a well-typed process) or P is successfully
terminated

Remark

• the notion of “successfully terminated process” depends on the
type of the objects it uses ⇒ see paper for details

16/17



Conclusions



concluding remarks

This work

• closes gap between sequential and concurrent TSOP

• first type system for deadlock-freedom in OJC

In the paper

• formal definitions and proofs
• more interesting examples

• sieve of Eratosthenes
• Gregory-Leibniz approximation of π

Proof-of-concept implementation

• www.di.unito.it/~padovani/Software/CobaltBlue

17/17

www.di.unito.it/~padovani/Software/CobaltBlue


References



Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
Typestate-oriented programming. In Proceedings of OOPSLA’09, pages
1015–1022. ACM, 2009. �

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical study of object
protocols in the wild. In Proceedings of ECOOP’11, volume LNCS 6813, pages
2–26. Springer, 2011. �

Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. Theoretical
Compututer Science, 96(1):217–248, 1992. �

Silvia Crafa and Luca Padovani. The Chemical Approach to Typestate-Oriented
Programming. ACM Transactions on Programming Languages and Systems, 39:
13:1–13:45, 2017. �

Robert DeLine and Manuel Fähndrich. Typestates for objects. In Proceedings of
ECOOP’04, LNCS 3086, pages 465–490. Springer, 2004. �

Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Inheritance in the
Join Calculus. Journal of Logic and Algebraic Programming, 57(1-2):23–69, 2003. �

Robert E. Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering, 12
(1):157–171, 1986.

17/17

http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.1007/978-3-642-22655-7_2
http://dx.doi.org/10.1016/0304-3975(92)90185-I
http://dx.doi.org/10.1145/3064849
http://dx.doi.org/10.1007/978-3-540-24851-4_21
http://dx.doi.org/10.1016/S1567-8326(03)00040-7

	Introduction to TypeState-Oriented Programming
	From sequential to concurrent TSOP
	A model for concurrent TSOP
	Preventing deadlocks
	Conclusions
	References

