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Abstract—We introduce a new programming language concept called
typestate, which is a refinement of the concept of type. Whereas the type
of a data object determines the set of operations ever permitted on the
object, typestate determines the subset of these operations which is per-
mitted in a particular context.

Typestate tracking is a program analysis technique which enhances
prograni reliability by detecting at compile-time syntactically legal but
semantically undefined execution sequences. These include, for exam-
ple, reading a variable before it has been initialized, dereferencing a
pointer after the dynamic object has been deallocated, etc. Typestate
tracking detects errors that cannot be detected by type checking or by
conventional static scope rules. Additionally, typestate tracking makes
it possible for compilers to insert appropriate finalization of data at
exception points and on program termination, eliminating the need to
support finalization' by means of cither garbage collection or. unsafe
deallocation operations such as Pascal’s dispose operation.

By enforcing typestate invariants at compile-time, it becomes prae-
tical to implement a “secure language”—that is, one in which all suc-
cessfully compiled program modules have fully defined execution-time
effects, and the only effects of program errors are incorrect output
values.

This paper defines typestate, gives examples of its application, and
shows how type hecking may be into'a compiler. We
discuss the of typ h for software reliability
and software structure, and conclude with a discussion of our experi-
ence using a high-level language incorporating typestate checking.

scope checking avoid some but not all nonsense. In Sec-
tion II, we informally present the typestate concept, give '
examiples of its use, and discuss the benefits which accrue
from compile-time tracking of typestate. In Section III,
we give a more formal definition of typestate, and present
an algorithm for verifying the typestate consistency of
programs. In Section IV, we discuss the interaction be-
tween typestate and other language design issues, such as
composite user-defined types, independent compilation,
and aliasing. We discuss our experience as designers and
users of NIL—a secure programming language incorpo-
rating compile-time typestate iracking. Section V presents
some conclusions and comparisons with related work.

A. DBpe Checking

From the perspective of software reliability, one of the
.most important properties of the concept of type is that it
supports the automatic detection of certain kinds of errors.

The type of a variable name determines the set of op-
erations which may be applied 'to that variable. For in-
stance, if X is of type real it is allowed to appear in the

" context
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from types to typestate [Strom and Yemini, 1986]

‘read -

_f:nallze assign

Fig. 1. Typestate transition graph for type integer: the scalar type integer
illustrates the simplest nontrivial typestate transition graph. There are
two typestates: L (intuitively “uninitialized”’) and I (“intuitively ini-

- tialized™). .
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typestate for objects [DeLine and Fahndrich, 2004]

« File (cannot read if closed)
« TCP socket (cannot send if disconnected)
. Stack (cannot pop if empty)
- Bounded buffer (cannot put if full)

“...approximately 7.2% of all types defined protocols, while
13% of classes were clients of types defining protocols.”
[Beckman et al., 2011]
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typestate-oriented programming [Aldrich et al., 2009]

class Buffer { }

state Empty of Buffer {
public void put(int x) { [Empty >> Full]
this « Full { this.value = x; }

b}

state Full of Buffer {
private int value;
public int get() { [Full >> Empty]
int v = this.value;
this < Empty {}
return v;

b}
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typestate-oriented programming: wrap-up

Key mechanisms

* pairing types with states Empty, Full
+ decorating methods with state transitions  Empty >> Full
« controlling object aliasing

Well-typed programs “don’t go wrong”

+ no unavailable method is ever invoked on any object

- well-typed programs either reduce or successfully terminate
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a concurrent buffer

producer

Remarks

+ producer doesn’t know when the buffer is empty
» consumer doesn’t know when the buffer is full

Consequences

+ pointless to require an order on the invocations of Get/Put
« an invocation of Get/Put may the caller
« sensible to require that there's the of Get/Put
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protocol conformance does not imply deadlock freedom

« buffer!Put(42) | buffer!Get
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protocol conformance does not imply deadlock freedom
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© O O
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protocol conformance does not imply deadlock freedom

« buffer!Put(42) | buffer!Get

« buffer!Get

« buffer!Put(42) | buffer!Put(s3)
« buffer!Put(buffer.Get)

®© OO0 O

Well-typed programs “don’t go wrong”* [Crafa and Padovani, 2017]

*...but it may be the case that they don’t go at all
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A model for concurrent TSOP




the chemical abstract machine [Berry and Boudol, 1992]

state change =
chemical reaction.

A&B&C > D&E

initial state
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the chemical abstract machine [Berry and Boudol, 1992]

state change =
chemical reaction.

.»-)A&B&C > D&E"-.

initial state | ‘new state |
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the Objective Join Calculus [Fournet et al., 2003]

new buffer =
EMPTY & Put(x) > buffer!FULL(x)
FULL(x) & Get(u) > buffer!EMPTY() & u!Reply(x)

A natural model for concurrent TSOP [Crafa and Padovani, 2017]

« concurrent objects
+ patterns = pairing of states and operations

+ patterns = synchronization
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Preventing deadlocks



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) *(Put-Get) =

EMPTY & Put(x) > buffer!FULL(x)

FULL(x) & Get(c) > buffer!EMPTY() & c!Reply(x)
buffer!EMPTY &

new cont : CLOSURE-Reply =
CLOSURE(buffer) & Reply(x) > buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)
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Definition (object dependency)
A dependency between u and v is established if v is the argument

of a message targeted to u (or vice versa)

Type system

1. enforce
2. track between objects

3. make sure the dependency graph is
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a glimpse at some typing rules

A typing judgment [ - P ¢ D reads as:

+ process P conforms with the types (I') of the objects it uses

- and establishes the dependencies ©® among such objects
where

« I maps object names to types
+ D is an irreflexive dependency relation

[T-senD]

u:m(t),v:tFu'm(v) eu~v
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parallel composition

[T-PAR]

r1|_P1.®1 rz}—onsz @1092:0)
[ T2k Py 6Py e (D,UD,)" (D, UD,)" irreflexive

Motivating examples
user!CLOSURE(buffer) & buffer!Get(user)

alM(b) & b!M(c) & c!'M(a)
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reactions and classes

[T-REACTION]
X:tH) X tHFPe®
HJ> P
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reactions and classes

‘not in the conclusion |

[T-REACTION]
X:tH) X tHFPe®
HJ> P

Remarks

- dependencies are confined within classes

+ classes can be type checked independently
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properties of well-typed processes

Theorem
If ) - P e®, then:

1. P is protocol conformant, and

2. either P reduces (to a well-typed process) or P is successfully
terminated

Remark

« the notion of “successfully terminated process” depends on the
type of the objects it uses = see paper for details
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concluding remarks

This work

+ closes gap between sequential and concurrent TSOP

- first type system for deadlock-freedom in OJC
In the paper

- formal definitions and proofs
« more interesting examples

- sieve of Eratosthenes
 Gregory-Leibniz approximation of =

Proof-of-concept implementation

« www.di.unito.it/~padovani/Software/CobaltBlue
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