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Introduction to TypeState-Oriented
Programming
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from types to typestate [Strom and Yemini, 1986]
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typestate for objects [DeLine and Fähndrich, 2004]

• File (cannot read if closed)

• TCP socket (cannot send if disconnected)

• Stack (cannot pop if empty)

• Bounded bu�er (cannot put if full)

• . . .

“. . . approximately 7.2% of all types defined protocols, while
13% of classes were clients of types defining protocols.”

[Beckman et al., 2011]
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typestate-oriented programming [Aldrich et al., 2009]

class Buffer { }

state Empty of Buffer {
public void put(int x) { [Empty >> Full]
this ← Full { this.value = x; }

} }

state Full of Buffer {
private int value;
public int get() { [Full >> Empty]
int v = this.value;
this ← Empty {}
return v;

} }
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typestate-oriented programming: wrap-up

Key mechanisms

• pairing types with states Empty, Full

• decorating methods with state transitions Empty >> Full

• controlling object aliasing linearity

Well-typed programs “don’t go wrong”

• no unavailable method is ever invoked on any object

• well-typed programs either reduce or successfully terminate
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From sequential to concurrent TSOP



a concurrent bu�er

producer bu�er consumer
Put

Get

Reply

Remarks

• producer doesn’t know when the bu�er is empty
• consumer doesn’t know when the bu�er is full

Consequences

• pointless to require an order on the invocations of Get/Put
• an invocation of Get/Put may suspend the caller
• sensible to require that there’s the same number of Get/Put
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protocol conformance does not imply deadlock freedom

• buffer!Put(42) | buffer!Get

,
• buffer!Get ,
• buffer!Put(42) | buffer!Put(43) ,
• buffer!Put(buffer.Get) /

Well-typed programs “don’t go wrong”∗ [Crafa and Padovani, 2017]

∗. . . but it may be the case that they don’t go at all
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A model for concurrent TSOP



the chemical abstract machine [Berry and Boudol, 1992]

C2 B A2

A & B & C . D & E

state change =
chemical reaction

initial state
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the chemical abstract machine [Berry and Boudol, 1992]


 →C2 B A2 A B C A C D E A C

A & B & C . D & E

state change =
chemical reaction

initial state new state
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the Objective Join Calculus [Fournet et al., 2003]

new buffer =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(u) . buffer!EMPTY() & u!Reply(x)

A natural model for concurrent TSOP [Crafa and Padovani, 2017]

• concurrent objects

• patterns⇒ pairing of states and operations

• patterns⇒ synchronization
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Preventing deadlocks



buffer!Put(buffer.Get) in the Objective Join Calculus

new buffer : (EMPTY + FULL) ·*(Put ·Get) =
EMPTY & Put(x) . buffer!FULL(x)
FULL(x) & Get(c) . buffer!EMPTY() & c!Reply(x)

buffer!EMPTY &

new cont : CLOSURE ·Reply =
CLOSURE(buffer) & Reply(x) . buffer!Put(x)

cont!CLOSURE(buffer) & buffer!Get(cont)
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strategy

Definition (object dependency)
A dependency between u and v is established if v is the argument
of a message targeted to u (or vice versa)

Type system

1. enforce protocol conformance

2. track dependencies between objects

3. make sure the dependency graph is acyclic
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a glimpse at some typing rules

A typing judgment Γ ` P • D reads as:

• process P conforms with the types (Γ) of the objects it uses

• and establishes the dependencies D among such objects

where

• Γ maps object names to types

• D is an irreflexive dependency relation

[t-send]

u : m(t), v : t ` u!m(v) • u ∼ v
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parallel composition

[t-par]

Γ1 ` P1 • D1 Γ2 ` P2 • D2

Γ1 · Γ2 ` P1 &P2 • (D1 ∪D2)+
D1 ∩D2 = ∅
(D1 ∪D2)+ irreflexive

Motivating examples

user!CLOSURE(buffer) & buffer!Get(user)

a!M(b) & b!M(c) & c!M(a)
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reactions and classes

[t-reaction]

x : t ` J x : t ` P • D
` J B P

Remarks

• dependencies are confined within classes

• classes can be type checked independently
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reactions and classes

[t-reaction]

x : t ` J x : t ` P • D
` J B P

not in the conclusion

Remarks

• dependencies are confined within classes

• classes can be type checked independently

15/17



properties of well-typed processes

Theorem
If ∅ ` P • D, then:

1. P is protocol conformant, and
2. either P reduces (to a well-typed process) or P is successfully
terminated

Remark

• the notion of “successfully terminated process” depends on the
type of the objects it uses ⇒ see paper for details
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Conclusions



concluding remarks

This work

• closes gap between sequential and concurrent TSOP

• first type system for deadlock-freedom in OJC

In the paper

• formal definitions and proofs
• more interesting examples

• sieve of Eratosthenes
• Gregory-Leibniz approximation of π

Proof-of-concept implementation

• www.di.unito.it/~padovani/Software/CobaltBlue
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