
hybrid protocol conformance verification
for binary sessions
Hernán Melgratti, Universidad de Buenos Aires
Luca Padovani, Università di Torino

Pre- and Post-Deployment Verification Techniques 2017, Torino

protocol conformance with types and contracts

A hybrid approach
I two different mechanisms with different expressive power
I early (compile time) vs late (execution time) verification

Self-imposed constraints
I (almost) no additional tools or skills required
I do everything with the language and its compiler

The language
I OCaml, no prior knowledge assumed in this talk
I approach portable to other languages, restrictions may apply

2 / 33

outline

1 Prologue

2 Protocol conformance using session types

3 Specifying properties of messages using contracts

4 Dependent and higher-order contracts

5 Epilogue

3 / 33

outline

1 Prologue

2 Protocol conformance using session types

3 Specifying properties of messages using contracts

4 Dependent and higher-order contracts

5 Epilogue

4 / 33

problem statement

p q

250, 16

"FA"

Given a program with two threads p and q where
I p and q exchange messages over one channel
I p sends to q two integer numbers n and b
I q sends to p the string representation of n in base b

verify that
I p and q conform to (some) protocol and
I possibly find out who’s to blame if this isn’t the case

5 / 33

standard channels are too restrictive

API of standard channels

val send : α→α t→unit
val receive : α t→α

Code of Clientmodule

send 250 c;
send 16 c;
let s = receive c in
print_string s (* type error! *)

I standard channels are uniformly typed

6 / 33

specifying protocols using session types

p qa+ session a a-

•

•

•

•

!int

!int

?string

•

•

•

•

?int

?int

!string

I session type = protocol specification as a type (≈ FSA)
I peer endpoints⇒ dual session types

7 / 33

syntax of session types

Session type T ::= end no more interactions
!t.T output
?t.T input
A session type variable
· · · branching/recursion/. . .

Type t ::= int · · · basic types
α type variable
T session type
· · ·

8 / 33

the client
API of binary sessions

val send : α→ !α.A→ A
val receive : ?α.A→α * A
val close : end→unit

Code of Clientmodule

let main c =
let c = send 250 c in c:!int.!int.?string
let c = send 16 c in c:!int.?string
let s, c = receive c in c:?string
print_endline s; close c c:end

Note
I cmust be used linearly throughout the code

9 / 33

the server
Code of Servermodule

let main c =
let n, c = receive c in c:?int.?int.!string
let b, c = receive c in c:?int.!string
let c = send (convert b n) c c:!string
in close c c:end

API for registration and connection

val register : (A→unit)→ A server_t
val connect : A server_t→ A

Connecting Client and Server

let server = register Server.main
let _ = Client.main (connect server)

10 / 33

demo

11 / 33

properties of well-typed programs

Communication safety
I threads that respect endpoint linearity communicate safely
I linearity violations are detected at runtime (at the latest)

Protocol fidelity
I the order of communications is consistent with the protocol

Progress, to some extent
I 2 threads sharing 1 session don’t block on communications
I this property scales to forest-like network topologies

12 / 33

outline

1 Prologue

2 Protocol conformance using session types

3 Specifying properties of messages using contracts

4 Dependent and higher-order contracts

5 Epilogue

13 / 33

well-typed programs may go wrong

Issues with n
I n < 0 “index out of bounds” exception

Issues with b
I b < 0 or b > 16 “index out of bounds” exception
I b = 0 “division by zero” exception
I b = 1 server loops

Issues with the string
I "0FA" leading 0 is unnecessary

By the way, who’s to blame for these issues?
I client and server must agree on a contract

14 / 33

from session types to contracts

I p sends to q an integer number

n ≥ 0

I p sends to q an integer number

b such that 2 ≤ b ≤ 16

I q sends to p a string

s such that |s| = blogb(n)c+ 1

Session type
!int.!int.?string.end

Contract

?

15 / 33

from session types to contracts

I p sends to q an integer number n ≥ 0
I p sends to q an integer number b such that 2 ≤ b ≤ 16
I q sends to p a string s such that |s| = blogb(n)c+ 1

Session type
!int.!int.?string.end

Contract

?

15 / 33

an embedded DSL of contracts
Example of contract definition

let client_c =
send_c
(flat_c (fun n→n ≥ 0))
(send_c

(flat_c (fun b→2 ≤ b ∧ b ≤ 16))
any_endpoint_c)

Contract constructors

flat_c : (α→bool)→[α]
send_c : [α]→[A]→[!α.A]
any_endpoint_c : [A]

client_c : [!int.!int.A]

16 / 33

starting a session with contract agreement

API for registration and connection

val register : (A→unit)→[A]→string→ A server_t
val connect : A server_t→string→ A

Connecting Client and Server

let server = register Server.main client_c "Server"
let _ = Client.main (connect server "Client")

Notes
I the code of client and server doesn’t change (but types do)
I contract/session type consistency is checked at compile time
I "Client" and "Server" are labels to assign blames
I the contract is checked at runtime, as the session progresses

17 / 33

demo

18 / 33

how does monitoring work?

[e]c,p,q

I expressions may be wrapped by amonitor
I c is the contract that e is supposed to satisfy
I p is responsible for values flowing out of e
I q is responsible for values flowing into e

19 / 33

semantics of flat contracts

[v]flat_c f ,p,q

20 / 33

semantics of flat contracts

[v]flat_c f ,p,q

if f v then v else blame p

v blame p

f v →∗ true f v →∗ false

20 / 33

semantics of output contracts

send v [a]send_c c d,p,q ‖ receive a

→ [send [v]c,q,p a]d,p,q ‖ receive a

→∗ [send v a]d,p,q ‖ receive a

→ [a]d,p,q ‖ (v, a)

21 / 33

semantics of output contracts

send v [a]send_c c d,p,q ‖ receive a

→ [send [v]c,q,p a]d,p,q ‖ receive a

→∗ [send v a]d,p,q ‖ receive a

→ [a]d,p,q ‖ (v, a)

v checked against c

21 / 33

semantics of output contracts

send v [a]send_c c d,p,q ‖ receive a

→ [send [v]c,q,p a]d,p,q ‖ receive a

→∗ [send v a]d,p,q ‖ receive a

→ [a]d,p,q ‖ (v, a)

v checked against c

v satisfies c

21 / 33

semantics of output contracts

send v [a]send_c c d,p,q ‖ receive a

→ [send [v]c,q,p a]d,p,q ‖ receive a

→∗ [send v a]d,p,q ‖ receive a

→ [a]d,p,q ‖ (v, a)

v checked against c

v satisfies c

a’s contract updated v sent

21 / 33

outline

1 Prologue

2 Protocol conformance using session types

3 Specifying properties of messages using contracts

4 Dependent and higher-order contracts

5 Epilogue

22 / 33

dependent contracts

I p sends to q an integer number n ≥ 0
I p sends to q an integer number b such that 2 ≤ b ≤ 16
I q sends to p a string s such that |s| = blogb(n)c+ 1

Note
I contract of s depends on messages exchanged earlier on
I idea: compute the contract for s once we know n and b

23 / 33

specifying dependent contracts

let client_c =
send_d
(flat_c (fun n→n ≥ 0))
(fun n→
send_d
(flat_c (fun b→2 ≤ b ∧ b ≤ 16))
(fun b→
(receive_c

(flat_c (fun s→length s == log b n + 1))
any_endpoint_c)))

More contract constructors

send_d : [α]→(α→[A])→[!α.A]
receive_c : [α]→[A]→[?α.A]

24 / 33

demo

25 / 33

properties of blame assignment (1/2)

Question
Is it always the case that, if a message triggers a contract violation,
the sender of the message is always the module to blame?

NO
With higher-order sessions the module to blame may be different
from the sender.

26 / 33

contracts for higher-order sessions

r

p

q

any_c : [?int.?int] client_c :
[!(?int.?int).?string]

let client_c =
send_c
(receive_c

(flat_c (fun n→n ≥ 0))
(receive_c

(flat_c
(fun b→2 ≤ b ∧ b ≤ 16))

any_endpoint_c))
any_endpoint_c

I p delegates the
session with r to q

I p lies to q

I r sends a message that
violates client_c

I q blames p, not r

27 / 33

contracts for higher-order sessions

r

p

q
any_c : [?int.?int]

any_c : [?string]

let client_c =
send_c
(receive_c

(flat_c (fun n→n ≥ 0))
(receive_c

(flat_c
(fun b→2 ≤ b ∧ b ≤ 16))

any_endpoint_c))
any_endpoint_c

I p delegates the
session with r to q

I p lies to q

I r sends a message that
violates client_c

I q blames p, not r

27 / 33

properties of blame assignment (2/2)

Question
Can a module be blamed by mistake?

NO
If p conforms with what p thinks is the contract of the endpoints it
uses, p won’t be blamed even if other modules conspire against p.

Several names for this property
I blame correctness, blame safety, blame soundness, . . .

28 / 33

outline

1 Prologue

2 Protocol conformance using session types

3 Specifying properties of messages using contracts

4 Dependent and higher-order contracts

5 Epilogue

29 / 33

related work on sessions

� Hüttel et al., “Foundations of Session Types and Behavioural
Contracts”, ACM Computing Surveys, 2016. OA

� Bartoletti et al., “Combining behavioural types with security analysis”,
Journal of Logical and Algebraic Methods in Programming, 2015.

� Ancona et al., “Behavioral Types in Programming Languages”,
Foundations and Trends in Programming Languages, 2016.

� Gay et al. (eds), “Behavioural Types: from Theory to Tools”, River
Publishers, 2017. OA

www.behavioural-types.eu

� Luca Padovani, “A Simple Library Implementation of Binary
Sessions”, Journal of Functional Programming, 2017.

30 / 33

www.behavioural-types.eu

related work on contracts

Contracts for higher-order functions and mutable objects

I Findler & Felleisen, “Contracts for Higher-Order Functions”,
Proceedings of ICFP, 2002.

I Strickland et al., “Chaperones and impersonators: run-time support
for reasonable interposition”, Proceedings of OOPSLA, 2012.

Contracts for higher-order sessions

I Melgratti & Padovani, “Chaperone Contracts for Higher-Order
Sessions”, Proceedings of ICFP, 2017. OA

31 / 33

implementation

I FuSe available from my home page
I monitoring not integrated yet, but available on ACM DL
I modular design, portable to other session libraries

contracts monitored
endpoints

monitored
session API

endpoints session API

32 / 33

wrap-up slide

Hybrid technique based on types and contracts
I communication safety
I protocol fidelity
I obligations/guarantees on the content of messages

Main highlights
I low impact on the programmer’s workflow
I gradual application of contracts, benign “blame war”
I useful information to locate the source of problems

THANKS!

33 / 33

	Prologue
	Protocol conformance using session types
	Specifying properties of messages using contracts
	Dependent and higher-order contracts
	Epilogue

