hybrid protocol conformance verification
for binary sessions

Hernan Melgratti, Universidad de Buenos Aires
Luca Padovani, Universita di Torino

Pre- and Post-Deployment Verification Techniques 2017, Torino

protocol conformance with types and contracts

A hybrid approach

» two different mechanisms with different expressive power
» early (compile time) vs late (execution time) verification

Self-imposed constraints
» (almost) no additional tools or skills required
» do everything with the language and its compiler

The language
» O0Caml, no prior knowledge assumed in this talk
» approach portable to other languages, restrictions may apply

2/33

outline

Prologue

Protocol conformance using session types
Specifying properties of messages using contracts
Dependent and higher-order contracts

Epilogue

3/33

outline

Protocol conformance using session types

4/33

problem statement

250,16

—— =)

l”:All

Given a program with two threads p and g where

» p and g exchange messages over one channel

» p sends to g two integer numbers nand b

» g sends to p the string representation of n in base b
verify that

» p and g conform to (some) protocol and

» possibly find out who's to blame if this isn't the case

5/33

standard channels are too restrictive

API| of standard channels

val send P a—a t—unit
val receive : o t—«

Code of Client module

send 250 c;

send 16 c;

let s = receive ¢ 1in

print_string s (* type error! x)

» standard channels are uniformly typed

6/33

specifying protocols using session types

[[]
lint int
Y Y
[[]

. a’ session a a7 .
lint p q 7int
Y Y
[J []
?string Istring
Y Y
[J []

> session type = protocol specification as a type (=~ FSA)
» peer endpoints = dual session types

7133

syntax of session types

Session type T

Type

t

end
lt. T
t.T

int---

no more interactions
output

input
session type variable
branching/recursion/...

basic types

type variable
session type

8/33

the client

API of binary sessions

val send ta—laA—A
val receive : 7. A—=a *x A
val close : end—unit

Code of Client module

let main c =
let c = send 250 ¢ 1in
let c = send 16 ¢ 1in

let s, ¢ = receive ¢ in
print_endline s; close c

Note

0o o0 o0 0

:lint.lint.?string
:lHint.?string
:?string

tend

» c must be used linearly throughout the code

9/33

the server

Code of Server module

let main c =
let n, c = receive c 1in
let b, ¢ = receive c in

let ¢ = send (convert b n) c

in close c

API for registration and connection

val register :

Connecting Client and Server

let server = register Server.main

0o o0 o0

let _ = Client.main (connect server)

:7int.7int.!string
:7int.!string
:lstring

tend

(A —unit) — A server_t
val connect : A server_t—A

10/33

demo

11/33

properties of well-typed programs

Communication safety
» threads that respect endpoint linearity communicate safely
» linearity violations are detected at runtime (at the latest)

Protocol fidelity
» the order of communications is consistent with the protocol

Progress, to some extent
» 2 threads sharing 1 session don't block on communications
» this property scales to forest-like network topologies

12/33

outline

Specifying properties of messages using contracts

13/33

well-typed programs may go wrong

Issues with n
» n<0 “index out of bounds” exception
Issues with b
» b<O0orb>16 “index out of bounds” exception
» b=0 “division by zero” exception
> b=1 server loops

Issues with the string
> "OFA" leading 0 is unnecessary

By the way, who's to blame for these issues?
» client and server must agree on a contract

14/33

from session types to contracts

» p sends to g an integer number
» p sends to g an integer number
» g sendsto p astring

Session type
lint.lHint.?string.end

15/33

from session types to contracts

» p sends to g an integer numbern > 0
» p sendsto g aninteger number b such that2 < b <16
» g sendsto p astring s such that |s| = |log,(n)]| + 1

Session type
lint.lHint.?string.end

Contract

15/33

an embedded DSL of contracts

Example of contract definition

let client_c =
send_c
(flat_.c (fun n—n >0))
(send_c
(flat_.c (funb—2 < b A b <16))
any_endpoint_c)

Contract constructors

flat_c ¢ (a—bool) — [a]
send_c : o] — [A] — [la.A]
any_endpoint_c : [A]

client_c : [Hnt.ldint.A]

16/33

starting a session with contract agreement

API for registration and connection

val register : (Zl—>un1t)-—>[A]~—>string——>A server_t
val connect : A server_t— string— A

Connecting Client and Server

let server = register Server.main client_c "Server"
let _ = Client.main (connect server "Client")

Notes

» the code of client and server doesn't change (but types do)

» contract/session type consistency is checked at compile time
> "Client" and "Server" are labels to assign blames

» the contract is checked at runtime, as the session progresses

171/33

demo

18/33

how does monitoring work?

[e] P-4

» expressions may be wrapped by a monitor
» Cis the contract that e is supposed to satisfy
» pisresponsible for values flowing out of e
» qis responsible for values flowing into e

19/33

semantics of flat contracts

[V] flat_c f,p,q

20/33

semantics of flat contracts

[V] flat_c f,p,q

iffvthenvelseblamep

fv—*true fv—* false

v blame p

20/33

semantics of output contracts

send_c cd,p,q

send v [d] | receivea

21/33

semantics of output contracts

send_c cd,p,q

send v [d] | receivea
v checked against c\ //

— [send [V]*?" a]™*? || receivea

21/33

semantics of output contracts

send v [g]*"-C P9 || receivea
v checked against c\ //
— [send [V]*?" a]™*9 || receivea

v satisfies c

—* [send v a]®P | receivea

21/33

semantics of output contracts

send v [g]*"-C P9 || receivea
v checked against c\ //
— [send [V]*?" a]™*9 || receivea
v satisfies c
_y* [send v a]d’p’q | receivea
d's contract updated v sent

-] (v,

21/33

outline

Dependent and higher-order contracts

22/33

dependent contracts

» p sendsto g an integer numbern >0
» p sendsto g an integer number b suchthat2 < b <16
» g sendsto p astring s such that |s| = |log,(n)]| + 1

Note
» contract of s depends on messages exchanged earlier on
» idea: compute the contract for s once we know n and b

23/33

specifying dependent contracts

let client_c =
send_d
(flat_c (fun n—n > 0))
(fun n—
send_d
(flat_.c (funb—2 < b A b <16))
(fun b —
(receive_c
(flat_c (fun s —length s == log b n + 1))
any_endpoint_c)))

More contract constructors

send_d : [a] = (a— [A]) — [la.A]
receive_c : [o] — [A] — [P« .A]

24/33

demo

25/33

properties of blame assignment (1/2)

Is it always the case that, if a message triggers a contract violation,
the sender of the message is always the module to blame?

With higher-order sessions the module to blame may be different
from the sender.

26/33

contracts for higher-order sessions

[1(?int.?int).?string]

let client_c = > p delegates the
send_c sessionwith rto g
(receive_c
(flat_c (fun n—n > 0)) > pliestoq
(receive_c
(flat_c

(funb—2<b Ab<16))
any_endpoint_c))
any_endpoint_c

27133

contracts for higher-order sessions

any_c
0

[?2int.?21int]

any_c : [?string]

let client_c = > p delegates the
send_c sessionwith rto g
(receive_c
(flat_c (fun n—n >0)) > pliestog
(receive_c
> rsends a message that
(flat_c violates client
(funb—2<b A b < 16)) crrent.c
any_endpoint_c)) » g blames p, notr

any_endpoint_c

27133

properties of blame assignment (2/2)

Can a module be blamed by mistake?

If p conforms with what p thinks is the contract of the endpoints it
uses, p won't be blamed even if other modules conspire against p.

Several names for this property
» blame correctness, blame safety, blame soundness, ...

28/33

outline

Epilogue

29/33

related work on sessions
Huttel et al,, “Foundations of Session Types and Behavioural
Contracts”, ACM Computing Surveys, 2016. OA

£ Bartoletti et al., “Combining behavioural types with security analysis”,
Journal of Logical and Algebraic Methods in Programming, 2015.

Ancona et al., "Behavioral Types in Programming Languages”,
Foundations and Trends in Programming Languages, 2016.

E Gay et al. (eds), “Behavioural Types: from Theory to Tools", River
Publishers, 2017. OA

www . behavioural-types.eu

8 Luca Padovani, "A Simple Library Implementation of Binary
Sessions”, Journal of Functional Programming, 2017.

30/33

www.behavioural-types.eu

related work on contracts

Contracts for higher-order functions and mutable objects

» Findler & Felleisen, “Contracts for Higher-Order Functions”,
Proceedings of ICFP, 2002.

» Strickland et al,, “Chaperones and impersonators: run-time support
for reasonable interposition”, Proceedings of OOPSLA, 2012.

Contracts for higher-order sessions

» Melgratti & Padovani, “Chaperone Contracts for Higher-Order
Sessions”, Proceedings of ICFP, 2017. OA

31/33

implementation

» FuSe available from my home page
» monitoring not integrated yet, but available on ACM DL
» modular design, portable to other session libraries

monitored monitored

contracts . .
endpoints session API

endpoints session API

32/33

wrap-up slide

Hybrid technique based on types and contracts
» communication safety
» protocol fidelity
> obligations/guarantees on the content of messages

Main highlights
» low impact on the programmer’s workflow
» gradual application of contracts, benign “blame war”
» useful information to locate the source of problems

THANKS!

33/33

	Prologue
	Protocol conformance using session types
	Specifying properties of messages using contracts
	Dependent and higher-order contracts
	Epilogue

