the chemical approach
to typestate-oriented programming

Silvia Crafa® Luca Padovani?

1Dipartimento di Matematica, Universita di Padova, Italy

’Dipartimento di Informatica, Universita di Torino, Italy

OOPSLA 2015

1/33

Outline

A historical perspective
Concurrency and TSOP
Behavioral types
Practicalities

Concluding remarks

2/33

Outline

A historical perspective

3/33

157

Typestate A Programmmg Language Concept for
Enhancmg Software Rehablhty

ROBERT E. STROM anp SHAULA YEMINI

Abstract—We introduce a new programming language concept called
typestate, which is a refinement of the concept of zype. Whereas the type
of a data object determines the set of operations ever permitted on the
object, typestate determines the subset of these operations which-is per-
mitted in a particular context.

Typestate tracking is a program analysis technique which enhances
program reliability by at pile-time s; ly legal but
semantically undefined execution sequences These include, for exam-
ple, reading a variable before it has been initialized, dereferencing a
pointer after the dynamic object has been deallocated, etc. Typestate
tracking detects errors that cannot be detected by type checking or by
conventional static scope rules.” Additionaliy, typestate tracking makes
‘it possible for compilers to insert appropriate finalization of data at
exception points and on program termination, eliminating the need to
support ‘finalization by means of either garbage collection or. unsafe
deallocation operations such as Pascal’s dispose operation.

By enforcing typestate invariants at compile-time, it becomes.prac=
tical to implement a “secure language”—that is, one in which all suc-

piled program modules have fully defined execution-time
effects, and the only effects of program errors are incorrect output
values.

This paper defines typestate, gives examples of its application, and
shows how typ ing may be embedded into a piler. We
discuss the consequences of typestate checking for software reliability
and software structure, and conclude with a discussion of our experi-
ence using a high-level language incorporating typestate checking.

scope checking avoid some but not all nonsense. In Sec-
tion II, we informally present the typestate concept, give
examiples of its use, and discuss the benefits which accrue
from compile-time tracking of typestate. In Section III,
we give a more formal definition of typestate, and present
an algorithm for verifying the typestate consistency of
programs. In Section IV, we discuss the interaction be-
tween typestate and other language design issues, such as
composite user-defined types, independent compilation,
and aliasing. We discuss our experience as designers and
users of NIL—a secure programming language incorpo-
rating compile-time typestate tracking. Section V presents
some conclusions and comparisons with related work.

A. Type Checking
From the perspective of software reliability, one of the

.most important properties of the concept of type is that it

supports the automatic detection of certain kinds of errors.

The type of a variable name determines the set of op-
erations which may be applied 'to that variable.” For in-
stance, if X is of type real it is allowed to appear in the

" context

4/33

Typestate = Type + Behavior (Strom & Yemini '86)

read -
“update

finalize assign

Fig. 1. Typestate transition graph for type integer: the scalar type integer
illustrates the simplest nontrivial typestate tramsition graph. There are
two typestates: L (intuitively “uninitidlized™’) and T (“intuitively ini-
talized™).)

5/33

Typestate for objects (DeLine & Fahndrich '04, Microsoft)

[TypeStates(”Raw”, "Bound”, " Connected”, " Closed”)]
class Socket {

[Post("Raw"), NotAliased |
Socket ();

[Pre("Raw”), Post("Bound"), NotAliased |
void Bind(string endpoint);

[Pre("Bound”), Post(” Connected”), NotAliased]
void Connect();

[Pre(” Connected”)]
void Send(string data);

[Pre(" Connected”) |
string Receive ();

[Pre(” Connected”), Post(” Closed”), NotAliased]
void Close ();

6/33

Typestate-oriented programming in Plaid
(Aldrich et al. 09, CMU)

state File {
public final String filename;

}

state OpenFile extends File {
private CFilePtr filePtr;

public int read() { ... }
public void close() [OpenFile>>ClosedFilel
{...}
}

state ClosedFile extends File {
public void open() [ClosedFile>>0OpenFile]
{...}

» typestate becomes a native language feature

7/33

Typestate-oriented programming: summary

Objective
» static enforcement of object protocols

Mechanisms

» abstract state annotations in types Closed, Open
» tracking of state transitions [Closed >> Open]
» aliasing control linearity

Our contribution: TSOP of concurrent objects
» concurrent objects are typically aliased
» state transitions aren't always statically trackable

8/33

Outline

Concurrency and TSOP

9/33

A simple concurrent object: the lock

acquire

release

Invoking acquire. ..
» has an effect if the lock is IDLE
» we don’t (and cannot) know when the lock is IDLE
» must be allowed regardless of the lock state
» suspends the invoker if the lock is BUSY

10/ 33

Our recipe for concurrent TSOP

General idea
» static checking of protocol compliance, whenever possible

» runtime synchronization, if necessary

A model of concurrent objects

» Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)
(not just because there are objects!)

A behavioral type system

> New!
(interfaces + protocols + aliasing control)

11/ 33

Why the OJC? Intriguing similarities!

Plaid

class File
{ public String name; }

state ClosedFile of File {
public void open() {
this < OpenFile {
ptr = fopen(name);

P}

state OpenFile of File {
private FILE*x ptr;
public void close() {
fclose(ptr);
this < ClosedFile {}
T}

12/ 33

Why the OJC? Intriguing similarities!

Plaid Objective Join Calculus

class File
{ public String name; }

state ClosedFile of File {

public void open() { CLOSED | open() >
this < OpenFile { let ptr = fopen(name)
ptr = fopen(name) ; in this.OPEN(ptr)
P}

state OpenFile of File {
private FILE*x ptr;

public void close() { OPEN(ptr) | close() ©
fclose(ptr); fclose(ptr);
this < ClosedFile {} this.CLOSED

1}

12/ 33

Example: lock
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)

or BUSY | release > o.IDLE
in ...

o.acquire(cl)
o.IDLE

o.acquire(c3) o.acquire(c2)

» explicit association of state and operations

13 /33

Example: lock

def o =[IDLE | acquire(c))b 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in ...

o.acquire(cl)

o.IDLE

o.acquire(c3) o.acquire(c2)

» explicit association of state and operations

13 /33

Example: lock

def o = IDLE | acquire(c) D[o.BUSY | C.reply(o))
or BUSY | release > o.IDLE
in ...

o.acquire(cl)

o.BUSY

c3.reply(o) o.acquire(c2)

» explicit association of state and operations
» explicit state changing

13 /33

Example: lock

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in ...

[o.acquire(cl)]

o.BUSY

c3.reply(o) [o.acquire(cQ)]

» explicit association of state and operations
» explicit state changing
» pending acquires are suspended

13 /33

Example: lock
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)

or BUSY | release > o.IDLE
in ...

o.acquire(cl)

o.BUSY

[c3.reply(o)] o.acquire(c2)

» explicit association of state and operations
» explicit state changing
» pending acquires are suspended

13 /33

Example: lock

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or [BUSY | release] > o.IDLE
in ...

o.acquire(cl)

o.BUSY

o.release o.acquire(c2)

» explicit association of state and operations
» explicit state changing
» pending acquires are suspended

13 /33

Example: lock

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)

or BUSY | release >|o.IDLE

in ...

.acquire(cl)

o.IDLE

o.acquire(c2)

» explicit association of state and operations
» explicit state changing
» pending acquires are suspended

13 /33

Outline

Behavioral types

14 /33

Behavioral types for the OJC

Observation
» both state and operations are messages

» legal message configuration
= which operations are permitted in which states

15/ 33

Behavioral types for the OJC

Observation
» both state and operations are messages

» legal message configuration
= which operations are permitted in which states

Which message configurations are legal for the lock?
» there must always be either an IDLE or a BUSY message
» there can be any number of acquire, regardless of state
» there must be one release in state BUSY, eventually

15 /33

Behavioral types for the OJC

Observation
» both state and operations are messages

» legal message configuration
= which operations are permitted in which states

Which message configurations are legal for the lock?
» there must always be either an IDLE or a BUSY message
» there can be any number of acquire, regardless of state
» there must be one release in state BUSY, eventually

xacquire ® (IDLE ¢ (BUSY ® release))

15 /33

Types ~ commutative regular expressions

Syntax
t,s =

m(t) (message)

16 / 33

Types ~ commutative regular expressions

Syntax

t,s

m (%)
I®s
tds
*t

(message)
(product)
(sum)
(exponential)

16 / 33

Types ~ commutative regular expressions

Syntax

t,s

m (%)
t®s
tds
*t

(unit for @)
(unit for ®)
(message)
(product)
(sum)
(exponential)

16 / 33

Types ~ commutative regular expressions

Syntax
t,s = 0 (unit for @)
1 (unit for ®)
m(t) (message)
t®s (product)
tds (sum)
*t (exponential)
Semantics
t [t
m {m} must send m
adb {a, b} must send either a or b
a®b {a- b} must send both a and b
1®m {e,m} can (but need not) send m

0] 2

16 / 33

Subtyping ~ inverse language inclusion

adb<a
m(real) < m(int)
t<1
t<O0

0t

generalizes OO subtyping
contravariance on arguments
top object without obligations
top object

usable object

17 /33

A few (simple) typing rules

Output

18 /33

A few (simple) typing rules

Output uim(t), vtk u.m(v)

18 /33

A few (simple) typing rules

Output 0Lt

u:m(t),v:tku.m(v)

18 /33

A few (simple) typing rules

Output 0Lt

u:m(t),v:tku.m(v)

u:trE~P u:sk Q@
Uu:tskPIQ

Parallel

18 /33

A few (simple) typing rules

Output vimH. vtk um) OFE
u:trE~P u:sk Q@
Parallel
u:t®skPIQ
_ u:skHP
Subsumption - t<s

u:tkP

18 /33

A few (simple) typing rules

Output vimH. vtk um) OFE
u:trE~P u:sk Q@
Parallel
u:t®skPIQ
_ u:skHP
Subsumption - t<s
u:tkP
u:skEP
Reaction t < tm

u:tkFmg |- lme>P

"'mk]®5

18 /33

A few (simple) typing rules

Output vm(D.vithumvy OFE
u:tkEP u:skQ
Parallel
u:tskPIQ
_ u:skHP

Subsumption _— t<s

u:tk-P

u:skHP
Reaction t< tmy - my| ®s

u:tkFmg |- lme>P

18 /33

Example: the lock protocol

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in ...

xacquire(....... [O) ® (IDLE @ (BUSY ® release))

19 /33

Example: the lock protocol

oD

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in ...

sacquire(....... [) ® (IDLE @ (BUSY ® release))

19 /33

Example: the lock protocol

m 0 : release

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in ...

xacquire(....... [) ® (IDLE @ (BUSY ® release))

19 /33

Example: the lock protocol

m 0 : release

def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)

or BUSY | release > oIl
in ... c : reply(release)

*acquire (reply(release)) ® (IDLE @ (BUSY ® release))

19 /33

Example: violation of the lock protocol

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
0.IDLE | r.reply(o)
in
let 1
let 1
l.release | 1l.release

Lock.create in

l.acquire in

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in

r.reply(o)
i

let 1 = Lock.create in
let 1 = 1l.acquire in
l.release | 1l.release

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

20 /33

Example: violation of the lock protocol

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
0.IDLE | r.reply(o)

i
1 :release)
s ="Lock.create in

let 1 = 1l.acquire in
l.release | 1l.release

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
0.IDLE | r.reply(o)

i
1l :release]
e ="Lock.create in

let 1 = 1l.acquire in
l.release | 1l.release

l:release @ 1: release

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

20 /33

Example: violation of the lock protocol

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
0.IDLE | r.reply(o)

i
1l :release]
e ="Lock.create in

let 1 = 1l.acquire in
l.release | 1l.release

1l:release ® release

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

20 /33

Example: sharing locks

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
0.IDLE | r.reply(o)
in
let 1 = Lock.create in
{ let 1 = l.acquire in l.release }
| { let 1 = 1l.acquire in l.release }

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

21 /33

Example: sharing locks

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in

r.reply(o)
i

let 1 = Lock.create in
{ let 1 = l.acquire in l.release }
| { let 1 = 1l.acquire in l.release }

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

21 /33

Example: sharing locks

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in
r.reply (o)
i
let 1 = Lock.Crea

{ let 1 = l.acquire in l.release }
| { let 1 = 1.acquire in 1l.release }

L racquiro]

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

21 /33

Example: sharing locks

def Lock = create(r) >
def o = IDLE | acquire(c) > 0.BUSY | c.reply(o)
or BUSY | release > o.IDLE
in

r.reply (o)
i

let 1 = Lock.create in
{ let 1 = l.acquire in l.release }
| { let 1 = 1.acquire in 1l.release }

1 : xacquire ® *acquire

xacquire (reply(release)) ® (IDLE & (BUSY ® release))

21 /33

Example: concurrent queue

Producer

enqueue

5

Consumer

peek peek

? peek ?

dequeue

22 /33

Example: concurrent queue

def o =

or

or
or
or

in

NONE | enqueue(m,c) >

let x = new Node(m) in

0o.HEAD(x) | o.TAIL(x) | c.reply(o)
TAIL(x) | enqueue(m,c) >

let y = new Node(m) in

xtnext :=y | o.TAIL(y) | c.reply(o)
NONE | peek(c) > o.NONE | c.none(o)
HEAD(x) | peek(c) > o.HEAD(x) | c.some(o)
HEAD(x) | TAIL(y) | dequeue(c) >

if x = y then

0.NONE | c.reply(xfval,o)

else

o.HEAD (xTnext) | o.TAIL(y) | c.reply(xfval,o)

o.NONE |

23 /33

Example: type of the concurrent queue

Producer protocol

» toroa = enqueue (reply (toroq))

24 /33

Example: type of the concurrent queue

Producer protocol

» toroa = enqueue (reply (toroq))

Consumer protocol

» toome = peek(some (tsone)) @ dequeue (reply (tupem))

24 /33

Example: type of the concurrent queue

Producer protocol

» toroa = enqueue (reply (toroq))

Consumer protocol
P tiome = peek(some (tyone)) P dequeue (reply (typm))
» tione = peek(none (tyym))

24 /33

Example: type of the concurrent queue

Producer protocol

» toroa = enqueue (reply (toroq))

Consumer protocol
» toome = peek(some (tsone)) @ dequeue (reply (tupem))
> tuone = peek (none (fumm))
Ptk = peek(none (tyxn) @ some (tsome))

24 /33

Example: type of the concurrent queue

Producer protocol

» toroa = enqueue (reply (toroq))

Consumer protocol
P tiome = peek(some (tyone)) P dequeue (reply (typm))
» tione = peek(none (tyym))
> tunn = peek (none (tyn,) @ some (toope))

Queue type

(NONE ® tprod ® tnone)
® (HEAD ® TAIL ® tyroa @ teome)

24 /33

Well-typed programs respect object protocols

Theorem (soundness)

Ifo:tk P andm;---m ¢ [t], P is not sending m; - - -my to o.

Examples
» 0 tioex M 0.IDLE | P and IDLE, release ¢ [tiock]
» 0 tjoex - 0.BUSY | P and BUSY, release, release ¢ [tioc]

25 /33

Outline

Practicalities

26 / 33

From theory (OJC) to practice (Java)

Guiding principles
» ad-hoc languages are nice and clean but seldom popular

» better to piggyback on a mainstream programming language

Runtime support for join definitions
» libraries for various programming languages, or

» direct implementation (message queues + condition vars)

Protocol enforcement
» user-provided behavioral type annotations, and

» behavioral type checker as a pre- (or post-) processor

27 /33

From the Objective Join Calculus to Java

0JC

Java

object

state message
operation message
chemical reaction
continuation

object

private method

public method

message queues + condition vars
~ sequential composition

class Lock {

private void IDLE() { ...}
private void BUSY() { ...}
public void acquire() { ... }
public void release() { ... }

Lock()

{ IDLEQ; }

28 /33

From theory (OJC) to practice (Java)

.java .type
{_* source (_J
type
checker

.java
javac

.class

29 /33

From theory (OJC) to practice (Java)

.java .type
{_* source (_J
type
checker

.java
javac

.class

.java .type

javac

.class

v

bytecode

type
checker

.class

29 /33

Protocol-aware compilation of join patterns

» knowing that objects will be used according to a specific
protocol may help producing better code (fewer locks. . .)

30 /33

Protocol-aware compilation of join patterns

» knowing that objects will be used according to a specific
protocol may help producing better code (fewer locks. . .)

12

TLL ——
LS ——

Reactions (millions/sec)
o

| | | | | | | | |
0 10 20 30 40 50 60 70 80 920 100
Threads

30 /33

Outline

Concluding remarks

31/33

Wrap-up

TSOP in a concurrent setting
P> static protocol enforcement + runtime support

the OJC is a natural model for concurrent TSOP
» TSOP = how you implement objects in the OJC

first behavioral type theory for OJC
P interface + protocols + sharing control

In the paper
» more examples (iterators, full-duplex channels)

» formal definitions (OOPSLA proceedings) and proofs (HAL)

32/33

Example: only usable objects can be sent

u:fook u.bar

33/33

Example: only usable objects can be sent

foo <0

u:fook u.bar

33/33

Example: only usable objects can be sent

foo<O0O~bar®0

u:fook u.bar

33/33

Example: only usable objects can be sent

U :bar b+ u.bar u:0FP

u:bar® 0t u.bar | P
foo<O0O~bar®0

u:fook u.bar |P

def

P=def v=--- in v.trash(u)

33 /33

	A historical perspective
	Concurrency and TSOP
	Behavioral types
	Practicalities
	Concluding remarks

