
the chemical approach
to typestate-oriented programming

Silvia Crafa1 Luca Padovani2

1Dipartimento di Matematica, Università di Padova, Italy

2Dipartimento di Informatica, Università di Torino, Italy

OOPSLA 2015

1 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

2 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

3 / 33

4 / 33

Typestate = Type + Behavior (Strom & Yemini ’86)

5 / 33

Typestate for objects (DeLine & Fähndrich ’04, Microsoft)468 R. DeLine and M. Fähndrich

[TypeStates(”Raw”, ”Bound”, ”Connected”, ”Closed”)]
class Socket {

[Post(”Raw”), NotAliased]
Socket();

[Pre(”Raw”), Post(”Bound”), NotAliased]
void Bind(string endpoint);

[Pre(”Bound”), Post(”Connected”), NotAliased]
void Connect();

[Pre(”Connected”)]
void Send(string data);

[Pre(”Connected”)]
string Receive ();

[Pre(”Connected”), Post(”Closed”), NotAliased]
void Close ();

}

Fig. 2. Simplified socket interface

how typestates are specified for our checking tool Fugue [6]. We use this syntax
to make the examples more readable, but will only informally describe it. Later,
in Section 6, we introduce a small formal language to make these examples
precise. Fig. 1(a) contains the source of a simple class WebPageFetcher providing
the functionality to open a particular web server, to fetch pages from the server,
and to close the connection to the server. A WebPageFetcher object can be in
one of two typestates, Open and Closed. The constructor produces an object in
typestate Closed, the method Open changes the object’s typestate from Closed
to Open, and the method Close changes the typestate back from Open to Closed.
Method GetPage can be called only when the object satisfies typestate Open,
but does not change the typestate. Similarly, method SetSite can only be called
when the object satisfies typestate Closed. These state changes can be pictured
as the finite state machine in Fig. 1(b).

The Pre and Post annotations on methods restrict the order of operations
that clients can invoke on the object. Such order restrictions are useful because
a method’s implementation makes assumptions about the object’s state when
it is invoked. For example, calling GetPage on a Closed object results in a null
dereference exception because the method’s code assumes that the field cxn is
not null. In our approach, we make the relationship between typestate and object
invariants explicit.

The annotations on the fields cxn and site define each typestate in terms of
what properties of the object’s concrete state hold in that typestate. If the object
is in state Closed, the private Socket cxn to the web server is null. If the object is in
state Open, then the private Socket cxn is non-null and in typestate Connected,
which is a typestate of the Socket class, as shown in Fig. 2. The annotation

6 / 33

Typestate-oriented programming in Plaid

(Aldrich et al. ’09, CMU)

This makes reasoning more complex, as the maintainer of
the class must be aware of a class invariant stating that the
field has a sentinel value if and only if the object is in the
closed state. If states are supported in the language, we can
simply eliminate the field in the closed state. There is never
any possibility of misinterpreting the sentinel value as a
real one (null pointer exceptions/core dumps anyone?) and
reasoning about the invariant is simpler because it is built
into the state-based model of the system.

Prior Language-Based Approaches. The Actor
model [Hewitt et al. 1973] was one of the first pro-
gramming models to treat states in a first class way. An
Actor can accept one of several messages; in response, it can
perform computation, create other actors, send messages,
and finally determine its next state—i.e. how to respond to
the next message received. Our state-orientated approach
draws inspiration from actors, but our concurrency ap-
proach [Stork et al. 2009] stays within a call-return function
model rather than using messages.

Smalltalk [Kay 1993] introduced a become method that
allows an object to exchange state and behavior with another
object, which can be used to model state changes in a first-
class way. In a related approach, the Self language [Ungar
and Smith 1987] allows an object to change the objects it
delegates to (i.e. inherits from), also providing a way to
model state changes.

The concept of a state is related to that of a role played
in interactions with other object. While most research in the
area uses roles to describe different (simultaneous) views of
an object, Pernici proposed state-like roles where objects can
transition from one role to another [Pernici 1990].

From the object modeling point of view, the closest work
to ours is Taivalsaari’s proposal to extend class-based lan-
guages with explicit definitions of logical states (modes),
each with its own set of operations and corresponding imple-
mentations [Taivalsaari 1993]. Our proposed object model
differs in providing explicit state transitions (rather than im-
plicit ones determined by fields) and in allowing different
fields in different states.

A number of CAD tools such as iLogic Rhapsody or IB-
M/Rational Rose Real-Time support a programming model
based on Statecharts [Harel 1987]; such models benefit from
many rich features of Statecharts but lack the dynamism
of object-oriented systems. Recently Sterkin proposed em-
bedding the principal features of Statecharts as a library
within Groovy, providing a smoother integration with ob-
jects [Sterkin 2008]. Our approach focuses on adding states
to the object-oriented paradigm, and does not consider other
features of Statecharts.

Prior Type System Support. Our proposal differs from all
the approaches above by providing a type system for track-
ing state changes. A related notion is allowing class changes

File {

String filename;

}

OpenFile File {

CFilePtr filePtr;

read() { ... }

close() [OpenFile>>ClosedFile]

{ ... }

}

ClosedFile File {

open() [ClosedFile>>OpenFile]

{ ... }

}

Listing 1. File states in Plaid

in a statically typed language [Bejleri et al. 2006, Bettini
et al. 2009]. If changing classes are viewed as states, this is
very similar in spirit to our proposal; in fact the Fickle sys-
tem [Drossopoulou et al. 2001] distinguishes “state classes,”
which describe states that can change. The recent advances
in typestate systems described above have overcome a num-
ber of the limitations in Fickle and related systems–e.g. the
inability to track the states of fields–and leveraging these ad-
vances opens the way to the new paradigm and accompany-
ing language design we describe in this paper.

3. Typestate-Oriented Programming
In this section, we describe the typestate-oriented program-
ming paradigm through a series of illustrative examples of
files, collections, and iterators. Section 4 then demonstrates
the generality of the approach through a richer example
taken from the domain of GUI frameworks.

Our examples are written in Plaid, a typestate-oriented
programming language currently under development at
Carnegie Mellon University3. To aid in readability, Plaid
uses Java’s syntax wherever possible.

3.1 States
Consider the example in Listing 1 which declares the in-
terface of a File in terms of OpenFile and ClosedFile

states. These abstractions are declared using the key-
word; states are just like Java’s classes, except that the state
of an object may change as an object evolves. We observe
that while the filename property is present in all files, the
read and close methods are only available in the Open-

File state, and the open method is only available in the
ClosedFile state. Methods and fields are declared much
as they are in Java; in fact, the declarations of filename,
filePtr, and read are legal Java syntax. Here filePtr

refers to some low-level operating system resource such as a

3 http://www.plaid-lang.org/

1017

I typestate becomes a native language feature

7 / 33

Typestate-oriented programming: summary

Objective

I static enforcement of object protocols

Mechanisms

I abstract state annotations in types Closed, Open

I tracking of state transitions [Closed ¿¿ Open]

I aliasing control linearity

Our contribution: TSOP of concurrent objects

I concurrent objects are typically aliased

I state transitions aren’t always statically trackable

8 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

9 / 33

A simple concurrent object: the lock

IDLE BUSY

acquire

release

Invoking acquire. . .

I has an effect if the lock is IDLE

I we don’t (and cannot) know when the lock is IDLE

I must be allowed regardless of the lock state

I suspends the invoker if the lock is BUSY

10 / 33

Our recipe for concurrent TSOP

General idea

I static checking of protocol compliance, whenever possible

I runtime synchronization, if necessary

A model of concurrent objects

I Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

(not just because there are objects!)

A behavioral type system

I New!
(interfaces + protocols + aliasing control)

11 / 33

Why the OJC? Intriguing similarities!

Plaid

class File

– public String name; ˝

state ClosedFile of File –

public void open() –

this← OpenFile –
ptr = fopen(name);

˝ ˝ ˝

state OpenFile of File –

private FILE* ptr;

public void close() –

fclose(ptr);

this← ClosedFile –˝
˝ ˝

Objective Join Calculus

CLOSED — open() .

let ptr = fopen(name)

in this.OPEN(ptr)

OPEN(ptr) — close() .

fclose(ptr);

this.CLOSED

12 / 33

Why the OJC? Intriguing similarities!

Plaid

class File

– public String name; ˝

state ClosedFile of File –

public void open() –

this← OpenFile –
ptr = fopen(name);

˝ ˝ ˝

state OpenFile of File –

private FILE* ptr;

public void close() –

fclose(ptr);

this← ClosedFile –˝
˝ ˝

Objective Join Calculus

CLOSED — open() .

let ptr = fopen(name)

in this.OPEN(ptr)

OPEN(ptr) — close() .

fclose(ptr);

this.CLOSED

12 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o.acquire(c3) o.acquire(c2)

o.acquire(c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o.acquire(c3) o.acquire(c2)

o.acquire(c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.acquire(c2)

o.acquire(c1)

o.BUSY

c3.reply(o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.acquire(c2)

o.acquire(c1)

o.BUSY

c3.reply(o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.acquire(c2)

o.acquire(c1)

o.BUSY

c3.reply(o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.acquire(c2)

o.acquire(c1)

o.BUSY

o.release

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Example: lock

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o.acquire(c2)

o.acquire(c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

13 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

14 / 33

Behavioral types for the OJC

Observation

I both state and operations are messages

I legal message configuration

= which operations are permitted in which states

Which message configurations are legal for the lock?

I there must always be either an IDLE or a BUSY message

I there can be any number of acquire, regardless of state

I there must be one release in state BUSY, eventually

∗acquire ⊗ (IDLE ⊕ (BUSY ⊗ release))

15 / 33

Behavioral types for the OJC

Observation

I both state and operations are messages

I legal message configuration

= which operations are permitted in which states

Which message configurations are legal for the lock?

I there must always be either an IDLE or a BUSY message

I there can be any number of acquire, regardless of state

I there must be one release in state BUSY, eventually

∗acquire ⊗ (IDLE ⊕ (BUSY ⊗ release))

15 / 33

Behavioral types for the OJC

Observation

I both state and operations are messages

I legal message configuration

= which operations are permitted in which states

Which message configurations are legal for the lock?

I there must always be either an IDLE or a BUSY message

I there can be any number of acquire, regardless of state

I there must be one release in state BUSY, eventually

∗acquire ⊗ (IDLE ⊕ (BUSY ⊗ release))

15 / 33

Types ∼ commutative regular expressions
Syntax

t, s ::=

0 (unit for ⊕)

1 (unit for ⊗)

m(t̃) (message)

t ⊗ s (product)

t ⊕ s (sum)

∗t (exponential)

Semantics

t JtK
m {m} must send m

a⊕ b {a, b} must send either a or b

a⊗ b {a · b} must send both a and b

1⊕ m {ε, m} can (but need not) send m

0 ∅ A

16 / 33

Types ∼ commutative regular expressions
Syntax

t, s ::=

0 (unit for ⊕)

1 (unit for ⊗)

m(t̃) (message)

t ⊗ s (product)

t ⊕ s (sum)

∗t (exponential)

Semantics

t JtK
m {m} must send m

a⊕ b {a, b} must send either a or b

a⊗ b {a · b} must send both a and b

1⊕ m {ε, m} can (but need not) send m

0 ∅ A

16 / 33

Types ∼ commutative regular expressions
Syntax

t, s ::= 0 (unit for ⊕)

1 (unit for ⊗)

m(t̃) (message)

t ⊗ s (product)

t ⊕ s (sum)

∗t (exponential)

Semantics

t JtK
m {m} must send m

a⊕ b {a, b} must send either a or b

a⊗ b {a · b} must send both a and b

1⊕ m {ε, m} can (but need not) send m

0 ∅ A

16 / 33

Types ∼ commutative regular expressions
Syntax

t, s ::= 0 (unit for ⊕)

1 (unit for ⊗)

m(t̃) (message)

t ⊗ s (product)

t ⊕ s (sum)

∗t (exponential)

Semantics

t JtK
m {m} must send m

a⊕ b {a, b} must send either a or b

a⊗ b {a · b} must send both a and b

1⊕ m {ε, m} can (but need not) send m

0 ∅ A

16 / 33

Subtyping ∼ inverse language inclusion

a⊕ b 6 a generalizes OO subtyping

m(real) 6 m(int) contravariance on arguments

t 6 1 top object without obligations

t 6 0 top object

0 66 t usable object

17 / 33

A few (simple) typing rules

Output
u : m

(t), v : t

` u.m

(v)
0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v)

0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v) 0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v) 0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v) 0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v) 0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

18 / 33

A few (simple) typing rules

Output
u : m(t), v : t ` u.m(v) 0 66 t

Parallel
u : t ` P u : s ` Q

u : t ⊗ s ` P —Q

Subsumption
u : s ` P

u : t ` P
t 6 s

Reaction
u : s ` P

u : t ` m1 — · · · —mk . P
t 6 t[m1 · · · mk]⊗ s

Brzozowski’s derivative

18 / 33

Example: the lock protocol

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

19 / 33

Example: the lock protocol

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

o : BUSY

19 / 33

Example: the lock protocol

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

o : BUSY o : release

19 / 33

Example: the lock protocol

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

o : BUSY o : release

c : reply(release)

19 / 33

Example: violation of the lock protocol

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

let l = l.acquire in

l.release — l.release

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

let l = l.acquire in

l.release — l.release

l : ∗acquire

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

let l = l.acquire in

l.release — l.release

l : release

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

let l = l.acquire in

l.release — l.release

l : release

l : release l : release

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

20 / 33

Example: violation of the lock protocol

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

let l = l.acquire in

l.release — l.release

l : release

l : release⊗ release

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

20 / 33

Example: sharing locks

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

– let l = l.acquire in l.release ˝

— – let l = l.acquire in l.release ˝

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

21 / 33

Example: sharing locks

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

– let l = l.acquire in l.release ˝

— – let l = l.acquire in l.release ˝

l : ∗acquire

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

21 / 33

Example: sharing locks

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

– let l = l.acquire in l.release ˝

— – let l = l.acquire in l.release ˝

l : ∗acquire
l : ∗acquire

l : ∗acquire

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

21 / 33

Example: sharing locks

def Lock = create(r) .

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in

o.IDLE — r.reply(o)

in

let l = Lock.create in

– let l = l.acquire in l.release ˝

— – let l = l.acquire in l.release ˝

l : ∗acquire

l : ∗acquire⊗ ∗acquire

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

21 / 33

Example: concurrent queue

· · · · · ·

Producer Consumer

enqueue peek peek
peek

dequeue

22 / 33

Example: concurrent queue

def o =

NONE — enqueue(m,c) .

let x = new Node(m) in

o.HEAD(x) — o.TAIL(x) — c.reply(o)

or TAIL(x) — enqueue(m,c) .

let y = new Node(m) in

x↑next := y — o.TAIL(y) — c.reply(o)
or NONE — peek(c) . o.NONE — c.none(o)

or HEAD(x) — peek(c) . o.HEAD(x) — c.some(o)

or HEAD(x) — TAIL(y) — dequeue(c) .

if x = y then

o.NONE — c.reply(x↑val,o)
else

o.HEAD(x↑next) — o.TAIL(y) — c.reply(x↑val,o)
in o.NONE — ...

23 / 33

Example: type of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tsome = peek(some(tsome))⊕ dequeue(reply(tunkn))
I tnone = peek(none(tunkn))

I tunkn = peek(none(tunkn)⊕ some(tsome))

Queue type

(NONE ⊗ tprod ⊗ tnone)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

24 / 33

Example: type of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tsome = peek(some(tsome))⊕ dequeue(reply(tunkn))
I tnone = peek(none(tunkn))

I tunkn = peek(none(tunkn)⊕ some(tsome))

Queue type

(NONE ⊗ tprod ⊗ tnone)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

24 / 33

Example: type of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tsome = peek(some(tsome))⊕ dequeue(reply(tunkn))
I tnone = peek(none(tunkn))

I tunkn = peek(none(tunkn)⊕ some(tsome))

Queue type

(NONE ⊗ tprod ⊗ tnone)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

24 / 33

Example: type of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tsome = peek(some(tsome))⊕ dequeue(reply(tunkn))
I tnone = peek(none(tunkn))

I tunkn = peek(none(tunkn)⊕ some(tsome))

Queue type

(NONE ⊗ tprod ⊗ tnone)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

24 / 33

Example: type of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tsome = peek(some(tsome))⊕ dequeue(reply(tunkn))
I tnone = peek(none(tunkn))

I tunkn = peek(none(tunkn)⊕ some(tsome))

Queue type

(NONE ⊗ tprod ⊗ tnone)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

24 / 33

Well-typed programs respect object protocols

Theorem (soundness)

If o : t ` P and m1 · · · mk /∈ JtK, P is not sending m1 · · · mk to o.

Examples

I o : tlock ` o.IDLE —P and IDLE, release /∈ JtlockK
I o : tlock ` o.BUSY —P and BUSY, release, release /∈ JtlockK

25 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

26 / 33

From theory (OJC) to practice (Java)

Guiding principles

I ad-hoc languages are nice and clean but seldom popular

I better to piggyback on a mainstream programming language

Runtime support for join definitions

I libraries for various programming languages, or

I direct implementation (message queues + condition vars)

Protocol enforcement

I user-provided behavioral type annotations, and

I behavioral type checker as a pre- (or post-) processor

27 / 33

From the Objective Join Calculus to Java

OJC Java

object object

state message private method

operation message public method

chemical reaction message queues + condition vars

continuation ∼ sequential composition

class Lock –

private void IDLE() – ... ˝

private void BUSY() – ... ˝

public void acquire() – ... ˝

public void release() – ... ˝

Lock() – IDLE(); ˝

˝

28 / 33

From theory (OJC) to practice (Java)

.java .type

source

type

checker

javac

.java

.class

.java .type

bytecode

type

checker

javac

.class

.class

29 / 33

From theory (OJC) to practice (Java)

.java .type

source

type

checker

javac

.java

.class

.java .type

bytecode

type

checker

javac

.class

.class

29 / 33

Protocol-aware compilation of join patterns

I knowing that objects will be used according to a specific

protocol may help producing better code (fewer locks. . .)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
ea

ct
io

ns
 (m

illi
on

s/
se

c)

Threads

TLL
TLS

30 / 33

Protocol-aware compilation of join patterns

I knowing that objects will be used according to a specific

protocol may help producing better code (fewer locks. . .)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
ea

ct
io

ns
 (m

illi
on

s/
se

c)

Threads

TLL
TLS

30 / 33

Outline

1 A historical perspective

2 Concurrency and TSOP

3 Behavioral types

4 Practicalities

5 Concluding remarks

31 / 33

Wrap-up

1 TSOP in a concurrent setting
I static protocol enforcement + runtime support

2 the OJC is a natural model for concurrent TSOP
I TSOP = how you implement objects in the OJC

3 first behavioral type theory for OJC
I interface + protocols + sharing control

In the paper

I more examples (iterators, full-duplex channels)

I formal definitions (OOPSLA proceedings) and proofs (HAL)

32 / 33

Example: only usable objects can be sent

u : bar ` u.bar

...

u : 0 ` P

u : bar⊗ 0 ` u.bar —P
foo 6 0 ' bar⊗ 0

u : foo ` u.bar

—P

P
def
= def v = · · · in v.trash(u)

33 / 33

Example: only usable objects can be sent

u : bar ` u.bar

...

u : 0 ` P

u : bar⊗ 0 ` u.bar —P

foo 6 0

' bar⊗ 0

u : foo ` u.bar

—P

P
def
= def v = · · · in v.trash(u)

33 / 33

Example: only usable objects can be sent

u : bar ` u.bar

...

u : 0 ` P

u : bar⊗ 0 ` u.bar —P

foo 6 0 ' bar⊗ 0
u : foo ` u.bar

—P

P
def
= def v = · · · in v.trash(u)

33 / 33

Example: only usable objects can be sent

u : bar ` u.bar

...

u : 0 ` P

u : bar⊗ 0 ` u.bar —P
foo 6 0 ' bar⊗ 0

u : foo ` u.bar —P

P
def
= def v = · · · in v.trash(u)

33 / 33

	A historical perspective
	Concurrency and TSOP
	Behavioral types
	Practicalities
	Concluding remarks

