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subtyping for session types
Gay and Hole [2005] and others

∀i ∈ I : Ai ⩽ Bi I ⊆ J

⊕{ℓi : Ai}i∈I ⩽ ⊕{ℓj : Bj}j∈J
∀j ∈ J : Aj ⩽ Bj J ⊆ I

N{ℓi : Ai}i∈I ⩽ N{ℓj : Bj}j∈J

• if A ⩽ B, a process that behaves as A can be used where a
process that behaves as B is expected

• direction of ⩽ may vary depending on viewpoint [Gay, 2016]
• N and ⊕ are n-ary operators
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propositions as protocols
Caires et al. [2016], Wadler [2014], Lindley and Morris [2016] and others

linear logic propositions ⇐⇒ session types
linear logic proofs ⇐⇒ well-typed processes

cut reduction ⇐⇒ communication

1 Can we define a non-trivial subtyping in this logical setting,
where N and ⊕ have fixed arity?

Yes

2 If so, is there anything “special” about subtyping in this setting
that has not occurred elsewhere?

Yes
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types and typing rules (finite case)

A,B ::= 0 | ⊤ |
termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B

no rule for 0
fail x ⊢ Γ , x : ⊤
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subtyping (finite case)

κ ⩽ κ 0 ⩽ A A ⩽ ⊤
A ⩽ A′ B ⩽ B′

A ⋆ B ⩽ A′ ⋆ B′

reflexivity bottom top precongruence

that’s it!
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example of subtyping with n-ary ⊕

⊕

⊕

B
⩽ ⊕

⊕

⊕

A

B

C

D

⊕{left : ⊕{right : B}} ⩽ ⊕
{

left : ⊕{left : A, right : B},
right : ⊕{left : C, right : D}

}
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example of subtyping with binary ⊕

⊕

⊕

0

0

B
⩽ ⊕

⊕

⊕

A

B

C

D

(0⊕ B)⊕ 0 ⩽ (A⊕ B)⊕ (C ⊕ D)
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example of subtyping with binary N

N

N

N

A

B

C

D

⩽ N

N

⊤

⊤

B

(A N B) N (C N D) ⩽ (⊤ N B) N ⊤
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compatibility = cut + subtyping

P ⊢ Γ , x : A Q ⊢ ∆, x : B

(x)(P | Q) ⊢ Γ ,∆
A ⩽ B⊥

We are changing a key proof rule, how do we know it’s sound?
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a coercion semantics of subtyping

If π :: A ⩽ B, then JπKx,y is a (cut-free) process that “translates”
protocol A (from x) into protocol B (on y)

t

1 ⩽ 1

|

x,y

= x().y[]

t

0 ⩽ A

|

x,y

= fail x

t

A ⩽ ⊤

|

x,y

= fail y

t
π1 :: A ⩽ A′ π2 :: B ⩽ B′

A⊕ B ⩽ A′ ⊕ B′

|

x,y

= case x
{
y[left]. Jπ1Kx,y
y[right]. Jπ2Kx,y

}

Theorem
If π :: A ⩽ B then JπKx,y ⊢ x : A⊥, y : B
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from compatibility back to cut

P ⊢ Γ , x : A Q ⊢ ∆, x : B

(x)(P | Q) ⊢ Γ ,∆
π :: A ⩽ B⊥

P{y/x} ⊢ Γ , y : A JπKy,x ⊢ y : A⊥, x : B⊥

(y)(P{y/x} | JπKy,x) ⊢ Γ , x : B⊥ Q ⊢ ∆, x : B

(x)((y)(P{y/x} | JπKy,x) | Q) ⊢ Γ
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types and typing rules (general case)
We use µMALL∞ [Baelde et al., 2016], linear logic with fixed points

A,B ::= 0 | ⊤︸ ︷︷ ︸
subtyping

|
termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B |

recursion︷ ︸︸ ︷
µX.A | νX.A

In µMALL∞ fixed points are simply unfolded

P ⊢ Γ , x : A{σX.A/X}
P ⊢ Γ , x : σX.A

σ ∈ {µ, ν}

• typing derivations may be infinite

, but not all are valid!
• in a nutshell: every infinite branch of a proof must unfold a

greatest fixed point infinitely many times
• this is a rough simplification, see paper and µMALL∞
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subtyping (general case)

κ ⩽ κ 0 ⩽ A A ⩽ ⊤
A ⩽ A′ B ⩽ B′

A ⋆ B ⩽ A′ ⋆ B′

A{σX.A/X} ⩽ B

σX.A ⩽ B

A ⩽ B{σX.B/X}
A ⩽ σX.B

reflexivity bottom top precongruence

unfold on the left unfold on the right

• subtyping derivations may be infinite
• without restrictions, the two fixed points would be equivalent
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the validity condition for subtyping derivations*
*again, this is a rough simplification

A subtyping derivation is valid provided that every infinite branch
of the derivation contains either
• infinitely many unfoldings of a µ to the left of ⩽, or
• infinitely many unfoldings of a ν to the right of ⩽

Intuition
“Small” protocols (least fixed point) can be subsumed by “large”
protocols (greatest fixed point), but not the other way around

More formally
A (valid) subtyping derivation must result into a well-typed coercion
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an example of invalid subtyping

1 ⩽ 1

...

νX.(1⊕ X) ⩽ µX.(1⊕ X)

1⊕ νX.(1⊕ X) ⩽ 1⊕ µX.(1⊕ X)

νX.(1⊕ X) ⩽ µX.(1⊕ X)

• there is only one infinite branch
• infinitely many unfoldings of a ν to the left of ⩽, and
• infinitely many unfoldings of a µ to the right of ⩽
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invalid subtyping: what can possibly go wrong?

P(x) ≜ x[right].P⟨x⟩

A def
= νX.(1 ⊕ X)

Q(x, y) ≜ case x{x().y[],Q⟨x, y⟩}

B def
= νX.(⊥ N X)

...

P⟨x⟩ ⊢ x : A

...

Q⟨x, y⟩ ⊢ x : B, y : 1
A ⩽ B⊥

(x)(P⟨x⟩ | Q⟨x, y⟩) ⊢ y : 1

Moral
• the validity condition makes ⩽ termination preserving
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concluding remarks

Results
• termination-preserving subtyping when ⊕/N have fixed arity
• the axioms 0 ⩽ A and A ⩽ ⊤ are all we need to express

differences in the branching structure of session types

Future work
• investigate principal typing
• consider more interesting coercions
e.g. to capture asynchronous subtyping [Ghilezan et al., 2022]

thank you
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