
a logical account of subtyping for session types
Ross Horne, University of Luxembourg Luca Padovani, University of Camerino

PLACES, 22nd april 2023

subtyping for session types
Gay and Hole [2005] and others

∀i ∈ I : Ai ⩽ Bi I ⊆ J

⊕{ℓi : Ai}i∈I ⩽ ⊕{ℓj : Bj}j∈J
∀j ∈ J : Aj ⩽ Bj J ⊆ I

N{ℓi : Ai}i∈I ⩽ N{ℓj : Bj}j∈J

• if A ⩽ B, a process that behaves as A can be used where a
process that behaves as B is expected

• direction of ⩽ may vary depending on viewpoint [Gay, 2016]
• N and ⊕ are n-ary operators

2 / 17

propositions as protocols
Caires et al. [2016], Wadler [2014], Lindley and Morris [2016] and others

linear logic propositions ⇐⇒ session types
linear logic proofs ⇐⇒ well-typed processes

cut reduction ⇐⇒ communication

1 Can we define a non-trivial subtyping in this logical setting,
where N and ⊕ have fixed arity?

Yes

2 If so, is there anything “special” about subtyping in this setting
that has not occurred elsewhere?

Yes

3 / 17

propositions as protocols
Caires et al. [2016], Wadler [2014], Lindley and Morris [2016] and others

linear logic propositions ⇐⇒ session types
linear logic proofs ⇐⇒ well-typed processes

cut reduction ⇐⇒ communication

1 Can we define a non-trivial subtyping in this logical setting,
where N and ⊕ have fixed arity? Yes

2 If so, is there anything “special” about subtyping in this setting
that has not occurred elsewhere? Yes

3 / 17

types and typing rules (finite case)

A,B ::= 0 | ⊤ |
termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B

no rule for 0
fail x ⊢ Γ , x : ⊤

4 / 17

types and typing rules (finite case)

A,B ::=

???︷ ︸︸ ︷
0 | ⊤ |

termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B

no rule for 0
fail x ⊢ Γ , x : ⊤

4 / 17

types and typing rules (finite case)

A,B ::=

???︷ ︸︸ ︷
0 | ⊤ |

termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B

no rule for 0
fail x ⊢ Γ , x : ⊤

4 / 17

subtyping (finite case)

κ ⩽ κ 0 ⩽ A A ⩽ ⊤
A ⩽ A′ B ⩽ B′

A ⋆ B ⩽ A′ ⋆ B′

reflexivity bottom top precongruence

that’s it!

5 / 17

example of subtyping with n-ary ⊕

⊕

⊕

B
⩽ ⊕

⊕

⊕

A

B

C

D

⊕{left : ⊕{right : B}} ⩽ ⊕
{

left : ⊕{left : A, right : B},
right : ⊕{left : C, right : D}

}
6 / 17

example of subtyping with binary ⊕

⊕

⊕

0

0

B
⩽ ⊕

⊕

⊕

A

B

C

D

(0⊕ B)⊕ 0 ⩽ (A⊕ B)⊕ (C ⊕ D)

7 / 17

example of subtyping with binary N

N

N

N

A

B

C

D

⩽ N

N

⊤

⊤

B

(A N B) N (C N D) ⩽ (⊤ N B) N ⊤

8 / 17

compatibility = cut + subtyping

P ⊢ Γ , x : A Q ⊢ ∆, x : B

(x)(P | Q) ⊢ Γ ,∆
A ⩽ B⊥

We are changing a key proof rule, how do we know it’s sound?

9 / 17

a coercion semantics of subtyping

If π :: A ⩽ B, then JπKx,y is a (cut-free) process that “translates”
protocol A (from x) into protocol B (on y)

t

1 ⩽ 1

|

x,y

= x().y[]

t

0 ⩽ A

|

x,y

= fail x

t

A ⩽ ⊤

|

x,y

= fail y

t
π1 :: A ⩽ A′ π2 :: B ⩽ B′

A⊕ B ⩽ A′ ⊕ B′

|

x,y

= case x
{
y[left]. Jπ1Kx,y
y[right]. Jπ2Kx,y

}

Theorem
If π :: A ⩽ B then JπKx,y ⊢ x : A⊥, y : B

10 / 17

from compatibility back to cut

P ⊢ Γ , x : A Q ⊢ ∆, x : B

(x)(P | Q) ⊢ Γ ,∆
π :: A ⩽ B⊥

P{y/x} ⊢ Γ , y : A JπKy,x ⊢ y : A⊥, x : B⊥

(y)(P{y/x} | JπKy,x) ⊢ Γ , x : B⊥ Q ⊢ ∆, x : B

(x)((y)(P{y/x} | JπKy,x) | Q) ⊢ Γ

11 / 17

types and typing rules (general case)
We use µMALL∞ [Baelde et al., 2016], linear logic with fixed points

A,B ::= 0 | ⊤︸ ︷︷ ︸
subtyping

|
termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B |

recursion︷ ︸︸ ︷
µX.A | νX.A

In µMALL∞ fixed points are simply unfolded

P ⊢ Γ , x : A{σX.A/X}
P ⊢ Γ , x : σX.A

σ ∈ {µ, ν}

• typing derivations may be infinite

, but not all are valid!
• in a nutshell: every infinite branch of a proof must unfold a

greatest fixed point infinitely many times
• this is a rough simplification, see paper and µMALL∞

12 / 17

types and typing rules (general case)
We use µMALL∞ [Baelde et al., 2016], linear logic with fixed points

A,B ::= 0 | ⊤︸ ︷︷ ︸
subtyping

|
termination︷︸︸︷
1 | ⊥ |

selection︷ ︸︸ ︷
A⊕ B | A N B |

delegation︷ ︸︸ ︷
A⊗ B | A O B |

recursion︷ ︸︸ ︷
µX.A | νX.A

In µMALL∞ fixed points are simply unfolded

P ⊢ Γ , x : A{σX.A/X}
P ⊢ Γ , x : σX.A

σ ∈ {µ, ν}

• typing derivations may be infinite, but not all are valid!
• in a nutshell: every infinite branch of a proof must unfold a

greatest fixed point infinitely many times
• this is a rough simplification, see paper and µMALL∞

12 / 17

subtyping (general case)

κ ⩽ κ 0 ⩽ A A ⩽ ⊤
A ⩽ A′ B ⩽ B′

A ⋆ B ⩽ A′ ⋆ B′

A{σX.A/X} ⩽ B

σX.A ⩽ B

A ⩽ B{σX.B/X}
A ⩽ σX.B

reflexivity bottom top precongruence

unfold on the left unfold on the right

• subtyping derivations may be infinite
• without restrictions, the two fixed points would be equivalent

13 / 17

the validity condition for subtyping derivations*
*again, this is a rough simplification

A subtyping derivation is valid provided that every infinite branch
of the derivation contains either
• infinitely many unfoldings of a µ to the left of ⩽, or
• infinitely many unfoldings of a ν to the right of ⩽

Intuition
“Small” protocols (least fixed point) can be subsumed by “large”
protocols (greatest fixed point), but not the other way around

More formally
A (valid) subtyping derivation must result into a well-typed coercion

14 / 17

an example of invalid subtyping

1 ⩽ 1

...

νX.(1⊕ X) ⩽ µX.(1⊕ X)

1⊕ νX.(1⊕ X) ⩽ 1⊕ µX.(1⊕ X)

νX.(1⊕ X) ⩽ µX.(1⊕ X)

• there is only one infinite branch
• infinitely many unfoldings of a ν to the left of ⩽, and
• infinitely many unfoldings of a µ to the right of ⩽

15 / 17

invalid subtyping: what can possibly go wrong?

P(x) ≜ x[right].P⟨x⟩

A def
= νX.(1 ⊕ X)

Q(x, y) ≜ case x{x().y[],Q⟨x, y⟩}

B def
= νX.(⊥ N X)

...

P⟨x⟩ ⊢ x : A

...

Q⟨x, y⟩ ⊢ x : B, y : 1
A ⩽ B⊥

(x)(P⟨x⟩ | Q⟨x, y⟩) ⊢ y : 1

Moral
• the validity condition makes ⩽ termination preserving

16 / 17

concluding remarks

Results
• termination-preserving subtyping when ⊕/N have fixed arity
• the axioms 0 ⩽ A and A ⩽ ⊤ are all we need to express

differences in the branching structure of session types

Future work
• investigate principal typing
• consider more interesting coercions
e.g. to capture asynchronous subtyping [Ghilezan et al., 2022]

thank you

17 / 17

concluding remarks

Results
• termination-preserving subtyping when ⊕/N have fixed arity
• the axioms 0 ⩽ A and A ⩽ ⊤ are all we need to express

differences in the branching structure of session types

Future work
• investigate principal typing
• consider more interesting coercions
e.g. to capture asynchronous subtyping [Ghilezan et al., 2022]

thank you

17 / 17

references

David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof
theory: the multiplicative additive case. In Jean-Marc Talbot and
Laurent Regnier, editors, 25th EACSL Annual Conference on
Computer Science Logic, CSL 2016, August 29 - September 1, 2016,
Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. 

Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic
propositions as session types. Math. Struct. Comput. Sci., 26(3):
367–423, 2016. 

Simon J. Gay. Subtyping supports safe session substitution. In Sam
Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella,
editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
volume 9600 of Lecture Notes in Computer Science, pages 95–108.
Springer, 2016. 

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.1017/S0960129514000218
http://dx.doi.org/10.1007/978-3-319-30936-1_5

references (cont.)

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2-3):191–225, 2005. 

Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko
Yoshida. Precise subtyping for asynchronous multiparty sessions. ACM
Trans. Comput. Logic, oct 2022. ISSN 1529-3785.  Just Accepted.

Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion
for session types. In Jacques Garrigue, Gabriele Keller, and Eijiro
Sumii, editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 434–447. ACM, 2016. 

Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):
384–418, 2014. 

17 / 17

http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1145/3568422
http://dx.doi.org/10.1145/2951913.2951921
http://dx.doi.org/10.1017/S095679681400001X

	Appendix
	References

