"It would be interesting to establish a termination result for CSLL. This would prove that the resulting calculus does not generate livelock. We expect this proof to be somewhat involved..."

Qian, Kawos, and Birkedal [2021]

Attacking the Termination Problem for Client-Server Sessions

sessions and linear logic

Caires and Pfenning [2010], Wadler [2014], Lindley and Morris [2016]
linear logic propositions linear logic proofs cut reduction

session types
well-typed processes
communication

proof = well-typed process

proof = well-typed process

proof = well-typed process

soundness of the logic => soundness of typing

The cut rule is admissible

- each application of the cut rule can be eliminated after a suitable number of cut reductions
- each open session can be terminated after a suitable number of communications

Consequences
\Rightarrow well-typed processes are deadlock free
\Rightarrow well-typed processes terminate
\Rightarrow well-typed processes are livelock free

propositions as protocols

$$
A::=\perp|\top| 0|1| A \oplus B|A \& B| A \otimes B|A \gtrdot B| ? A \mid!A
$$

Rules for clients

$$
\frac{\vdash \Gamma}{\vdash \Gamma, ? A} \quad \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A} \quad \frac{\vdash \Gamma, ? A, ? A}{\vdash \Gamma, ? A}
$$

Rule for server

$$
\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A}
$$

exponentials in Classical Linear Logic

sequential(ized) clients vs unlimited parallel instances of server

Lack of accuracy

- availability of unbounded copies of the server is unreasonable

Lack of expressiveness

- unable to model stateful servers and contention
- examples: auctions, purchase of rare items, ...
- examples: locks, CAS registers, shared objects, ...

exponentials in Client-Server Linear Logic (CSLL)

Qian, Kavvos, and Birkedal [2021]
concurrent clients vs unlimited sequential instances of server

a linear logic with co-exponentials

$$
A::=\perp|\top| 0|1| A \oplus B|A \& B| A \otimes B|A \& B| \subset A \mid i A
$$

Rules for co-clients

$$
\bar{\vdash} \stackrel{\frac{\vdash \Gamma, A}{\vdash \Gamma, \leftharpoonup A}}{\stackrel{\vdash}{\vdash} \quad \frac{\vdash, \iota A}{\vdash \Delta, \iota A}}
$$

Rule for co-servers

$$
\frac{\vdash \Gamma \quad \vdash \Gamma, A \quad \vdash \Gamma, i A, j A}{\vdash \Gamma, j A}
$$

a problem with CSLL

- we have solved the accuracy and expressiveness issues
- ... but now we're dealing with a non-standard linear logic for which no cut elimination result is known
- besides, cut reduction is not deterministic nor confluent

$$
\frac{P \vdash \Gamma,\langle A \quad Q \vdash \Delta,\langle A}{P:: Q \vdash \Gamma, \Delta, \iota A} \equiv \frac{Q \vdash \Delta, \leftharpoonup A \quad P \vdash \Gamma,\langle A}{Q:: P \vdash \Gamma, \Delta, \iota A}
$$

- Qian, Kavvos, and Birkedal [2021] prove deadlock freedom, leaving termination as an open problem
- no termination \Rightarrow no livelock freedom $) \cdot$

Baelde, Doumane, and Saurin [2016], Doumane [2017]

Linear logic with fixed points
$A::=\perp|\top| 0|1| A \oplus B|A \& B| A \otimes B|A \& B| X|\mu X . A| \nu X . A$

Infinitary proofs

- fixed points are simply unfolded
- proofs may be infinite
- validity condition on proofs

Properties

- valid proofs enjoy cut elimination

co-exponentials as fixed points

C $A=$ make (concurrently) zero or more requests of A

$$
\mathcal{C A} \stackrel{\text { def }}{=} \mu X \cdot(1 \oplus A \oplus(X \otimes X))
$$

¡ $A=$ handle (sequentially) zero or more requests of A

$$
i A \stackrel{\text { def }}{=} \nu X .(\perp \& A \&(X>X))
$$

Strategy for proving termination of CSLL (fallacy alert)

1. encode co-exponentials in CSLL into fixed points of μ MALL $^{\infty}$
2. encode well-typed CSLL process into valid μ MALL ${ }^{\infty}$ proof
3. use cut elimination of $\mu M A L L \infty$ to infer termination of CSLL

- all μ MALL ${ }^{\infty}$ cut reductions correspond to CSLL reductions
- some CSLL reductions don't correspond to $\mu \mathrm{MALL}^{\infty}$ cut reductions

$$
\frac{P \rightarrow Q}{P:: R \rightarrow Q:: R}
$$

- clients may reduce independently, even before they connect to the server
- cut elimination of $\mu \mathrm{MALL}{ }^{\infty}$ only entails weak termination of CSLL ${ }^{-}$

from weak to fair termination

Theorem (subject reduction)

If P is well typed and $P \rightarrow Q$ then Q is well typed

P	\rightarrow	P_{1}	\rightarrow	P_{2}	\rightarrow
well typed	\Rightarrow	well typed	\Rightarrow	well typed	\Rightarrow

from weak to fair termination

Theorem (subject reduction)
 If P is well typed and $P \rightarrow Q$ then Q is well typed

Theorem (weak termination)
If P is well typed then P is weakly terminating

P	\rightarrow	P_{1}	\rightarrow	P_{2}	\rightarrow	\cdots
well typed	\Rightarrow	well typed	\Rightarrow	well typed	\Rightarrow	\cdots
\Downarrow						
\Downarrow		\Downarrow \Downarrow				
weakly term.		weakly term.		weakly term.		\cdots

from weak to fair termination

Theorem (subject reduction)
 If P is well typed and $P \rightarrow Q$ then Q is well typed

Theorem (weak termination)
If P is well typed then P is weakly terminating

P	\rightarrow	P_{1}	\rightarrow	P_{2}	\rightarrow	\cdots
well typed	\Rightarrow	well typed	\Rightarrow	well typed	\Rightarrow	\cdots
\Downarrow						
\Downarrow		weakly term.		weakly term.		\cdots

Theorem (Ciccone and Padovani [2022a])
$P \rightarrow^{*} Q$ implies Q weakly term. $\Longleftrightarrow P$ fairly terminating

deadlock freedom + fair termination \Rightarrow livelock freedom

concluding remarks

Properties of CSLL

- does it terminate? almost certainly yes, but still open problem
- does it enjoy livelock freedom? yes

concluding remarks

Properties of CSLL

- does it terminate? almost certainly yes, but still open problem
- does it enjoy livelock freedom? yes

Building on the expressiveness of μ MALL $^{\infty}$

- binary sessions [Ciccone and Padovani, 2022b]
- client-server sessions [Padovani, 2023]
- concurrent objects and actors?
[Crafa and Padovani, 2017, de'Liguoro and Padovani, 2018]

concluding remarks

Properties of CSLL

- does it terminate? almost certainly yes, but still open problem
- does it enjoy livelock freedom? yes

Building on the expressiveness of μ MALL $^{\infty}$

- binary sessions [Ciccone and Padovani, 2022b]
- client-server sessions [Padovani, 2023]
- concurrent objects and actors?
[Crafa and Padovani, 2017, de'Liguoro and Padovani, 2018]

thank you

References

David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 42:1-42:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. 囚

references ii

Luís Caires and Frank Pfenning．Session types as intuitionistic linear propositions．In Paul Gastin and François Laroussinie，editors， CONCUR 2010 －Concurrency Theory，21th International Conference， CONCUR 2010，Paris，France，August 31－September 3， 2010. Proceedings，volume 6269 of Lecture Notes in Computer Science， pages 222－236．Springer，2010．囚
Luca Ciccone and Luca Padovani．Fair termination of binary sessions． Proc．ACM Program．Lang．，6（POPL）：1－30，2022a．囚
Luca Ciccone and Luca Padovani．An infinitary proof theory of linear logic ensuring fair termination in the linear π－calculus．In Bartek Klin，Slawomir Lasota，and Anca Muscholl，editors，33rd International Conference on Concurrency Theory，CONCUR 2022，September 12－16，2022，Warsaw，Poland，volume 243 of LIPIcs，pages 36：1－36：18． Schloss Dagstuhl－Leibniz－Zentrum für Informatik，2022b．囚

references iii

Silvia Crafa and Luca Padovani. The chemical approach to typestate-oriented programming. ACM Trans. Program. Lang. Syst., 39 (3):13:1-13:45, 2017. 囚

Ugo de'Liguoro and Luca Padovani. Mailbox types for unordered interactions. In Todd D. Millstein, editor, 32nd European Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages 15:1-15:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 囚

Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris Diderot University, France, 2017. URL https://tel.archives-ouvertes.fr/tel-01676953.

references iv

Sam Lindley and J．Garrett Morris．Talking bananas：structural recursion for session types．In Jacques Garrigue，Gabriele Keller，and Eijiro Sumii，editors，Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming，ICFP 2016， Nara，Japan，September 18－22，2016，pages 434－447．ACM，2016．内

Luca Padovani．On the fair termination of client－server sessions．In
Delia Kesner and Pierre－Marie Pédrot，editors，28th International Conference on Types for Proofs and Programs（TYPES 2022），LIPIcs． Schloss Dagstuhl－Leibniz－Zentrum für Informatik， 2023.

Zesen Qian，G．A．Kawos，and Lars Birkedal．Client－server sessions in linear logic．Proc．ACM Program．Lang．，5（ICFP）：1－31，2021．囚

Philip Wadler．Propositions as sessions．J．Funct．Program．，24（2－3）： 384－418，2014．囚

