
the chemical approach
to typestate-oriented programming

Silvia Crafa1 Luca Padovani2

1Dipartimento di Matematica, Università di Padova, Italy

2Dipartimento di Informatica, Università di Torino, Italy

OOPSLA 2015

1 / 20

Typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // Closed File

public method open() –

[Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName); // OK if closed

˝

˝

˝

state OpenFile of File – // Open File

private FILE* handle; // meaningful if open

public method close() – ... ˝

[Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // OK if open

˝

2 / 20

Typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // Closed File

public method open() – [Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName); // OK if closed

˝ ˝

˝

state OpenFile of File – // Open File

private FILE* handle; // meaningful if open

public method close() – ... ˝ [Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // OK if open

˝

2 / 20

Typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // Closed File

public method open() – [Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName); // OK if closed

˝ ˝ ˝

state OpenFile of File – // Open File

private FILE* handle; // meaningful if open

public method close() – ... ˝ [Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // OK if open

˝

2 / 20

Typestate-oriented programming

Objective

I enforcement of object protocols

Features

I static tracking of state transitions [Closed ¿¿ Open]

I restricted aliasing

This talk: an approach for TSOP of concurrent objects

I state transitions aren’t always statically trackable

I concurrent objects are typically shared

3 / 20

A simple concurrent object: the lock

IDLE BUSY

acquire

release

Invoking acquire. . .

I has an effect if the lock is IDLE

I must be possible regardless of the lock state

I suspends the invoker if the lock is BUSY

4 / 20

Our recipe for concurrent TSOP

General idea

I static checking of protocol compliance, whenever possible

I runtime synchronization, if necessary

A model of concurrent objects

I Objective Join Calculus (Fournet et al. ’03)

I Chemical Abstract Machine (Berry & Boudol ’92)

A behavioral type system

I object interface

I object protocols

I sharing control

5 / 20

Outline

1 Introduction

2 TSOP in the Objective Join Calculus

3 Behavioral types for concurrent TSOP

4 A concurrent queue

5 Concluding remarks

6 / 20

Outline

1 Introduction

2 TSOP in the Objective Join Calculus

3 Behavioral types for concurrent TSOP

4 A concurrent queue

5 Concluding remarks

7 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o. acquire (c3) o. acquire (c2)

o. acquire (c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o. acquire (c3) o. acquire (c2)

o. acquire (c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o. acquire (c2)

o. acquire (c1)

o.BUSY

c3.reply (o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o. acquire (c2)

o. acquire (c1)

o.BUSY

c3.reply (o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o. acquire (c2)

o. acquire (c1)

o.BUSY

c3.reply (o)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o. acquire (c2)

o. acquire (c1)

o.BUSY

o. release

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

The lock in the Objective Join Calculus

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

o.IDLE

o. acquire (c2)

o. acquire (c1)

I explicit association of state and operations

I explicit state changing

I pending acquires are suspended

8 / 20

Outline

1 Introduction

2 TSOP in the Objective Join Calculus

3 Behavioral types for concurrent TSOP

4 A concurrent queue

5 Concluding remarks

9 / 20

Behavioral types for the OJC

Observation

I both state and operations are messages

Which message configurations are legal for the lock?

I there must always be either an IDLE or a BUSY message

I there can be any number of acquire, regardless of state

I there must be one release in state BUSY, eventually

Types ∼ commutative Kleene algebra

∗acquire ⊗ (IDLE ⊕ (BUSY ⊗ release))

10 / 20

Behavioral types for the OJC

Observation

I both state and operations are messages

Which message configurations are legal for the lock?

I there must always be either an IDLE or a BUSY message

I there can be any number of acquire, regardless of state

I there must be one release in state BUSY, eventually

Types ∼ commutative Kleene algebra

∗acquire ⊗ (IDLE ⊕ (BUSY ⊗ release))

10 / 20

Locks, files and their protocols

Which message configurations are legal for files?

I a file is always either CLOSED or OPEN

I a CLOSED file can (but need not) be opened

I an OPEN file must be either read or closed

(CLOSED⊗ (1⊕ open))⊕ (OPEN⊗ (read⊕ close))

Where’s the protocol?

11 / 20

Locks, files and their protocols

Which message configurations are legal for files?

I a file is always either CLOSED or OPEN

I a CLOSED file can (but need not) be opened

I an OPEN file must be either read or closed

(CLOSED⊗ (1⊕ open))⊕ (OPEN⊗ (read⊕ close))

Where’s the protocol?

11 / 20

Continuations and protocols

I the Objective Join Calculus is purely asynchronous

I sequential composition ⇒ continuation passing

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

∗acquire;release ⊗ · · ·

12 / 20

Continuations and protocols

I the Objective Join Calculus is purely asynchronous

I sequential composition ⇒ continuation passing

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

∗acquire;release ⊗ · · ·

o : BUSY

12 / 20

Continuations and protocols

I the Objective Join Calculus is purely asynchronous

I sequential composition ⇒ continuation passing

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(. ?)⊗ (IDLE⊕ (BUSY⊗ release))

∗acquire;release ⊗ · · ·

o : BUSY o : release

12 / 20

Continuations and protocols

I the Objective Join Calculus is purely asynchronous

I sequential composition ⇒ continuation passing

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

∗acquire;release ⊗ · · ·

o : BUSY o : release

c : reply(release)

12 / 20

Continuations and protocols

I the Objective Join Calculus is purely asynchronous

I sequential composition ⇒ continuation passing

def o = IDLE — acquire(c) . o.BUSY — c.reply(o)

or BUSY — release . o.IDLE

in ...

∗acquire(reply(release))⊗ (IDLE⊕ (BUSY⊗ release))

∗acquire;release ⊗ · · ·

o : BUSY o : release

12 / 20

Well-typed programs respect object protocols

Theorem (soundness)

If o : t ` P and m1 · · · mk /∈ t, P is not sending m1 · · · mk to o.

Examples

I o : tlock ` o.IDLE —P and IDLE, release /∈ tlock
I o : tlock ` o.BUSY —P and BUSY, release, release /∈ tlock

13 / 20

Outline

1 Introduction

2 TSOP in the Objective Join Calculus

3 Behavioral types for concurrent TSOP

4 A concurrent queue

5 Concluding remarks

14 / 20

A concurrent queue

· · · · · ·

Producer Consumer

enqueue peek
peek

dequeue

15 / 20

Protocols/types of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tcons = peek(none(tcons)⊕ some(tsome))
I tsome = dequeue(reply(tcons))

Queue type

(NONE ⊗ tprod ⊗ tcons)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

16 / 20

Protocols/types of the concurrent queue

Producer protocol

I tprod = enqueue(reply(tprod))

Consumer protocol

I tcons = peek(none(tcons)⊕ some(tsome))
I tsome = dequeue(reply(tcons))

Queue type

(NONE ⊗ tprod ⊗ tcons)
⊕ (HEAD ⊗ TAIL ⊗ tprod ⊗ tsome)

producer and consumer share the queue

16 / 20

Outline

1 Introduction

2 TSOP in the Objective Join Calculus

3 Behavioral types for concurrent TSOP

4 A concurrent queue

5 Concluding remarks

17 / 20

Wrap-up

1 TSOP in a concurrent setting
I static protocol enforcement + runtime support

2 the OJC is a natural model for concurrent TSOP
I pairing state with operations + explicit state changing

3 first behavioral type theory for OJC
I interface + protocols + sharing control

In the paper

I more examples (iterators, full-duplex channels)

I formal definitions (proceedings) and proofs (tech report)

18 / 20

Ongoing work

Implementation

I integration into existing programming language

Runtime support for join definitions

I libraries for various programming languages, or

I direct implementation (message queues + condition vars)

Protocol enforcement

I behavioral type checker as a pre- (or post-) processor

19 / 20

A concurrent queue

def o =

NONE — enqueue(m,c) .

let x = new Node(m) in

o.HEAD(x) — o.TAIL(x) — c.reply(o)

or TAIL(x) — enqueue(m,c) .

let y = new Node(m) in

x↑next := y — o.TAIL(y) — c.reply(o)
or NONE — peek(c) . o.NONE — c.none(o)

or HEAD(x) — peek(c) . o.HEAD(x) — c.some(o)

or HEAD(x) — TAIL(y) — dequeue(c) .

if x = y then

o.NONE — c.reply(x↑val, o)
else

o.HEAD(x↑next) — o.TAIL(y) — c.reply(x↑val, o)
in o.NONE — ...

20 / 20

	Introduction
	TSOP in the Objective Join Calculus
	Behavioral types for concurrent TSOP
	A concurrent queue
	Concluding remarks

