
fair termination of binary sessions
Luca Padovani, Università di Torino (joint work with Luca Ciccone)

22nd Italian Conference on Theoretical Computer Science, 13 Sep 2021

http://www.di.unito.it/~padovani/assets/talks/ictcs_2021.pdf

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

general ideas

Definition
A binary session is a private communication channel linking two
processes, each using one session endpoint according to a protocol
specification called session type

P Q
x : !a.?b.!end

x : ?a.!b.?end

Session types with branching points

?a.S + ?b.T !a.S ⊕ !b.T

2 / 24

goals

I enable the compositional static analysis of distributed
programs

I ensure that exchanged messages have the expected type,
interactions occur in the expected order and processes don’t
get stuck

I ensure that interactions terminate, eventually

3 / 24

goals

I enable the compositional static analysis of distributed
programs

I ensure that exchanged messages have the expected type,
interactions occur in the expected order and processes don’t
get stuck

I ensure that interactions terminate, eventually

3 / 24

the shopper, the store and the shipper

A B C
add or pay

x

ship

y

A(x)
M
= . . . shopper adds items to cart and pays. . .

B(x , y)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

C (y)
M
= y?ship.wait y .done

(x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

4 / 24

session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

5 / 24

session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

5 / 24

session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

5 / 24

session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

5 / 24

session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

5 / 24

parallel composition and duality

x : T , y : S ` B〈x , y〉 y : S⊥ ` C 〈y〉

x : T ` (y)(B〈x , y〉 | C 〈y〉)

I store and shipper use y according to dual session types

S = !ship.!end S⊥ = ?ship.?end

6 / 24

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

one store, many shoppers

The store complies with one “canonical” protocol

T = ?add.T + ?pay.?end

Shoppers may comply with several feasible protocols

T⊥ = R = !add.R ⊕ !pay.!end any number of items

R1 = !add.R at least one item

Rodd = !add.(!add.Rodd ⊕ !pay.!end) odd number of items

. . . many possibilities

7 / 24

subtyping for session types [Gay and Hole, 2005]

S 6 T

Left-to-right substitution of endpoints [Liskov and Wing, 1994]

I an endpoint of type S can be safely used
where an endpoint of type T is expected

?a 6 ?a + ?b !a⊕ !b 6 !a

Right-to-left substitution of processes [Gay, 2016]

I a process complying with protocol T can be safely used
where a process complying with protocol S is expected

8 / 24

expected versus actual shopper

Rodd = !add.(!add.Rodd ⊕ !pay.!end) actual behavior
T⊥ = R = !add.R ⊕ !pay.!end expected behavior

x : Rodd ` A〈x〉
T⊥ 6 Rodd

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

9 / 24

from safety to liveness

Theorem (nothing bad ever happens)

In a well-typed program

I exchanged message have the expected type (comm. safety)

I interactions occur in the expected order (protocol fidelity)

I programs don’t get stuck (deadlock freedom)

Desideratum (something good eventually happens)

Also, in a well-typed program

I all sessions eventually terminate

10 / 24

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

fair termination

Definition (fair termination)

We say that P is fairly terminating if each finite execution of P
may be extended to done. That is

P =⇒ Q implies Q =⇒ done

Remark
In a fairly terminating program

I every message sent may be received

I every process waiting for a message may receive one

I every session may terminate

P =⇒ (x)(x!a.P ′ | Q)

=⇒ done

11 / 24

fair termination

Definition (fair termination)

We say that P is fairly terminating if each finite execution of P
may be extended to done. That is

P =⇒ Q implies Q =⇒ done

Remark
In a fairly terminating program

I every message sent may be received

I every process waiting for a message may receive one

I every session may terminate

P =⇒ (x)(x!a.P ′ | Q) =⇒ done

11 / 24

why “fair termination”?

Definition (strong fairness [Francez, 1986])

A program execution is strongly fair if every reduction that is
infinitely often enabled is infinitely often performed

Consider the shopper protocol R = !add.R ⊕ !pay.!end:

I an execution in which the shopper sends add forever is unfair

I in every maximal, fair execution the shopper eventually sends pay

Theorem
A (finite-state) program is fairly terminating if and only if every
maximal, fair execution is finite and finishes with done

I In principle, a fairly-terminating program may execute forever

I In practice, i.e. if its realistic executions are fair, it doesn’t

12 / 24

why “fair termination”?

Definition (strong fairness [Francez, 1986])

A program execution is strongly fair if every reduction that is
infinitely often enabled is infinitely often performed

Consider the shopper protocol R = !add.R ⊕ !pay.!end:

I an execution in which the shopper sends add forever is unfair

I in every maximal, fair execution the shopper eventually sends pay

Theorem
A (finite-state) program is fairly terminating if and only if every
maximal, fair execution is finite and finishes with done

I In principle, a fairly-terminating program may execute forever

I In practice, i.e. if its realistic executions are fair, it doesn’t

12 / 24

termination < fair termination < deadlock freedom

deadlock freedom

termination

fair termination

13 / 24

example: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

1 this program is deadlock-free but not fairly terminating

2 the strong fairness assumption alone doesn’t turn an ordinary
session type system into one that ensures fair termination

6 is designed to preserve safety, not liveness

14 / 24

example: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

1 this program is deadlock-free but not fairly terminating

2 the strong fairness assumption alone doesn’t turn an ordinary
session type system into one that ensures fair termination

6 is designed to preserve safety, not liveness

14 / 24

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

fair subtyping [Padovani, 2013, 2016, Ciccone and Padovani, 2021a]

defined by a generalized inference system [Ancona et al., 2017, Dagnino, 2019]

p end 6 p end

Sk 6 Tk

!{ai : Si}i∈I 6 !{aj : Tj}j∈J
========================= corule

Si 6 Ti
(i∈I)

?{ai : Si}i∈I 6 ?{ai : Ti}i∈I∪J
Si 6 Ti

(i∈I)

!{ai : Si}i∈I∪J 6 !{ai : Ti}i∈I

We say that S is a fair subtype of T , notation S 6 T , if

I there is an arbitrary derivation of S 6 T using just rules

I there is a finite derivation S 6 T using rules and corules

15 / 24

example of fair subtyping

R = !add.R ⊕ !pay.!end R1 = !add.R

...

R 6 R !end 6 !end

R 6 R

R 6 R1

!end 6 !end
=========

R 6 R

R 6 R1

R 6 R1

Note

I there is no finite derivation for R 6 R1 without the corule
16 / 24

example of unfair subtyping

R = !add.R ⊕ !pay.!end R∞ = !add.R∞

...

R 6 R∞

R 6 R∞

...
======
R 6 R∞
======
R 6 R∞

R 66 R∞

Note

I there is no finite derivation for R 6 R1, even with the corule
17 / 24

properties of fair subtyping

Fact
Fair subtyping is a liveness-preserving subtyping relation closely
related to fair testing [Natarajan and Cleaveland, 1995] and should
testing [Rensink and Vogler, 2007]

I see Bugliesi et al. [2009], Bravetti and Zavattaro [2009],
Padovani [2013, 2016], Bravetti et al. [2021] for details

I see Ciccone and Padovani [2021a] for an Agda formalization

18 / 24

compulsive shopping is not allowed. . .

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

19 / 24

compulsive shopping is not allowed. . . or is it?

A different typing derivation for the compulsive shopper

A(x)
M
= x!add.A〈x〉

R = !add.R ⊕ !pay.!end
R1 = !add.R

x : R ` A〈x〉

x : R1 ` x!add.A〈x〉
R 6 R1

x : R ` x!add.A〈x〉

I R 6 R1 is used in the typing derivation of a recursive process

I “infinitely many” usages of fair subtyping (R 6 R1) may have
the same overall effect of unfair subtyping (R 6 R∞)

I well-typed processes should only be allowed to perform a
bounded number of casts

20 / 24

cast boundedness

Γ `n P

I P is well-typed in Γ and has rank n

I n is an upper bound to the number of casts performed by P

x : R `n A〈x〉

x : R1 `n x!add.A〈x〉
R 6 R1

x : R `n+1 x!add.A〈x〉

I we cannot assign a finite rank to this typing derivation

21 / 24

fair termination, at last

Theorem
If ∅ `n P, then P is fairly terminating

Proof idea.
Show that typing is preserved by reductions (subject reduction):

I if Γ `n P and P −→ Q, then Γ `n Q
Define a measure for well-typed processes that includes n as well as
the effort required to terminate all open sessions:

I Γ `µ P

Show that for every non-terminated, well-typed program there exists
a reduct with a strictly smaller measure:

I if ∅ `µ P , either P = done or P −→ Q and ∅ `ν Q where ν < µ

Note: the measure may increase if new sessions are opened.

22 / 24

outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion

summary

A compositional static analysis ensuring fair termination

I well-typed programs terminate, if the fairness assumption is true

I infinite executions are possible, but only in principle

A nice application of generalized inference systems

I definition of fair subtyping

I typing corules (not discussed in this talk, see below)

Want more?

I many simplifications in this talk

I see Ciccone and Padovani [2021b] for details
(higher-order sessions, proofs, type checking algorithm, . . .)

23 / 24

ongoing and future work

Type checker implementation

I ready, soon available on my home page

Other communication models

I multiparty sessions (straightforward)

I actors, many-to-one communications (challenging)

thank you!

24 / 24

ongoing and future work

Type checker implementation

I ready, soon available on my home page

Other communication models

I multiparty sessions (straightforward)

I actors, many-to-one communications (challenging)

thank you!

24 / 24

references

Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing
inference systems by coaxioms. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of
Lecture Notes in Computer Science, pages 29–55. Springer, 2017. �

Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong
service compliance. Math. Struct. Comput. Sci., 19(3):601–638, 2009.

�

http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.1017/S0960129509007658

references (cont.)

Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. Fair refinement for
asynchronous session types. In Stefan Kiefer and Christine Tasson,
editors, Foundations of Software Science and Computation Structures -
24th International Conference, FOSSACS 2021, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12650 of Lecture Notes in Computer Science,
pages 144–163. Springer, 2021. �

Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi.
Compliance preorders for web services. In Cosimo Laneve and Jianwen
Su, editors, Web Services and Formal Methods, 6th International
Workshop, WS-FM 2009, Bologna, Italy, September 4-5, 2009, Revised
Selected Papers, volume 6194 of Lecture Notes in Computer Science,
pages 76–91. Springer, 2009. �

24 / 24

http://dx.doi.org/10.1007/978-3-030-71995-1_8
http://dx.doi.org/10.1007/978-3-642-14458-5_5

references (cont.)

Luca Ciccone and Luca Padovani. Inference Systems with Corules for Fair
Subtyping and Liveness Properties of Binary Session Types. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, Proceedings of
the 48th International Colloquium on Automata, Languages, and
Programming (ICALP’21), volume 198 of LIPIcs, pages 125:1–125:16,
Dagstuhl, Germany, 2021a. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. �

Luca Ciccone and Luca Padovani. Fair Termination of Binary Sessions.
Technical report, 2021b. URL http://www.di.unito.it/~padovani/

assets/downloads/fair-termination.pdf. unpublished.

Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference
systems. Log. Methods Comput. Sci., 15(1), 2019. �

Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer, 1986. ISBN 978-3-540-96235-9. �

24 / 24

http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.125
http://www.di.unito.it/~padovani/assets/downloads/fair-termination.pdf
http://www.di.unito.it/~padovani/assets/downloads/fair-termination.pdf
http://dx.doi.org/10.23638/LMCS-15(1:26)2019
http://dx.doi.org/10.1007/978-1-4612-4886-6

references (cont.)

Simon J. Gay. Subtyping supports safe session substitution. In Sam
Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella,
editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
volume 9600 of Lecture Notes in Computer Science, pages 95–108.
Springer, 2016. �

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2-3):191–225, 2005. �

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994. �

V. Natarajan and Rance Cleaveland. Divergence and fair testing. In
Zoltán Fülöp and Ferenc Gécseg, editors, Automata, Languages and
Programming, 22nd International Colloquium, ICALP95, Szeged,
Hungary, July 10-14, 1995, Proceedings, volume 944 of Lecture Notes
in Computer Science, pages 648–659. Springer, 1995. �

24 / 24

http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1007/3-540-60084-1_112

references (cont.)

Luca Padovani. Fair subtyping for open session types. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, volume 7966 of Lecture Notes in Computer Science, pages
373–384. Springer, 2013. �

Luca Padovani. Fair subtyping for multi-party session types. Math. Struct.
Comput. Sci., 26(3):424–464, 2016. �

Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):

125–198, 2007. �

24 / 24

http://dx.doi.org/10.1007/978-3-642-39212-2_34
http://dx.doi.org/10.1017/S096012951400022X
http://dx.doi.org/10.1016/j.ic.2006.06.002

	Introduction
	Subtyping
	Fair termination
	Fair subtyping
	Conclusion
	Appendix
	References

