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Luca Padovani, Università di Torino (joint work with Luca Ciccone)

22nd Italian Conference on Theoretical Computer Science, 13 Sep 2021

http://www.di.unito.it/~padovani/assets/talks/ictcs_2021.pdf


outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion



outline

1 Introduction

2 Subtyping

3 Fair termination

4 Fair subtyping

5 Conclusion



general ideas

Definition
A binary session is a private communication channel linking two
processes, each using one session endpoint according to a protocol
specification called session type

P Q
x : !a.?b.!end

x : ?a.!b.?end

Session types with branching points

?a.S + ?b.T !a.S ⊕ !b.T

2 / 24



goals

I enable the compositional static analysis of distributed
programs

I ensure that exchanged messages have the expected type,
interactions occur in the expected order and processes don’t
get stuck

I ensure that interactions terminate, eventually
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the shopper, the store and the shipper

A B C
add or pay

x

ship

y

A(x)
M
= . . . shopper adds items to cart and pays. . .

B(x , y)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

C (y)
M
= y?ship.wait y .done

(x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))
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session type checking

I type checking ≈ matching the structure of processes and types

B(x : T , y : S)
M
= x?{add : B〈x , y〉, pay : wait x .y !ship.close y}

T = ?add.T + ?pay.?end
S = !ship.!end

x : T , y : S ` B〈x , y〉

y : !end ` close y

y : S ` y !ship.close y

x : ?end, y : S ` wait x .y !ship.close y

x : T , y : S ` x?{add : B〈x , y〉, pay : wait x .y !ship.close y}
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parallel composition and duality

x : T , y : S ` B〈x , y〉 y : S⊥ ` C 〈y〉

x : T ` (y)(B〈x , y〉 | C 〈y〉)

I store and shipper use y according to dual session types

S = !ship.!end S⊥ = ?ship.?end
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one store, many shoppers

The store complies with one “canonical” protocol

T = ?add.T + ?pay.?end

Shoppers may comply with several feasible protocols

T⊥ = R = !add.R ⊕ !pay.!end any number of items

R1 = !add.R at least one item

Rodd = !add.(!add.Rodd ⊕ !pay.!end) odd number of items

. . . many possibilities
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subtyping for session types [Gay and Hole, 2005]

S 6 T

Left-to-right substitution of endpoints [Liskov and Wing, 1994]

I an endpoint of type S can be safely used
where an endpoint of type T is expected

?a 6 ?a + ?b !a⊕ !b 6 !a

Right-to-left substitution of processes [Gay, 2016]

I a process complying with protocol T can be safely used
where a process complying with protocol S is expected
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expected versus actual shopper

Rodd = !add.(!add.Rodd ⊕ !pay.!end) actual behavior
T⊥ = R = !add.R ⊕ !pay.!end expected behavior

x : Rodd ` A〈x〉
T⊥ 6 Rodd

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))
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from safety to liveness

Theorem (nothing bad ever happens)

In a well-typed program

I exchanged message have the expected type (comm. safety)

I interactions occur in the expected order (protocol fidelity)

I programs don’t get stuck (deadlock freedom)

Desideratum (something good eventually happens)

Also, in a well-typed program

I all sessions eventually terminate
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fair termination

Definition (fair termination)

We say that P is fairly terminating if each finite execution of P
may be extended to done. That is

P =⇒ Q implies Q =⇒ done

Remark
In a fairly terminating program

I every message sent may be received

I every process waiting for a message may receive one

I every session may terminate

P =⇒ (x)(x!a.P ′ | Q)

=⇒ done
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why “fair termination”?

Definition (strong fairness [Francez, 1986])

A program execution is strongly fair if every reduction that is
infinitely often enabled is infinitely often performed

Consider the shopper protocol R = !add.R ⊕ !pay.!end:

I an execution in which the shopper sends add forever is unfair

I in every maximal, fair execution the shopper eventually sends pay

Theorem
A (finite-state) program is fairly terminating if and only if every
maximal, fair execution is finite and finishes with done

I In principle, a fairly-terminating program may execute forever

I In practice, i.e. if its realistic executions are fair, it doesn’t
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termination < fair termination < deadlock freedom

deadlock freedom

termination

fair termination
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example: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))

1 this program is deadlock-free but not fairly terminating

2 the strong fairness assumption alone doesn’t turn an ordinary
session type system into one that ensures fair termination

6 is designed to preserve safety, not liveness
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fair subtyping [Padovani, 2013, 2016, Ciccone and Padovani, 2021a]

defined by a generalized inference system [Ancona et al., 2017, Dagnino, 2019]

p end 6 p end

Sk 6 Tk

!{ai : Si}i∈I 6 !{aj : Tj}j∈J
========================= corule

Si 6 Ti
(i∈I )

?{ai : Si}i∈I 6 ?{ai : Ti}i∈I∪J
Si 6 Ti

(i∈I )

!{ai : Si}i∈I∪J 6 !{ai : Ti}i∈I

We say that S is a fair subtype of T , notation S 6 T , if

I there is an arbitrary derivation of S 6 T using just rules

I there is a finite derivation S 6 T using rules and corules
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example of fair subtyping

R = !add.R ⊕ !pay.!end R1 = !add.R

...

R 6 R !end 6 !end

R 6 R

R 6 R1

!end 6 !end
=========

R 6 R

R 6 R1

R 6 R1

Note

I there is no finite derivation for R 6 R1 without the corule
16 / 24



example of unfair subtyping

R = !add.R ⊕ !pay.!end R∞ = !add.R∞

...

R 6 R∞

R 6 R∞

...
======
R 6 R∞
======
R 6 R∞

R 66 R∞

Note

I there is no finite derivation for R 6 R1, even with the corule
17 / 24



properties of fair subtyping

Fact
Fair subtyping is a liveness-preserving subtyping relation closely
related to fair testing [Natarajan and Cleaveland, 1995] and should
testing [Rensink and Vogler, 2007]

I see Bugliesi et al. [2009], Bravetti and Zavattaro [2009],
Padovani [2013, 2016], Bravetti et al. [2021] for details

I see Ciccone and Padovani [2021a] for an Agda formalization

18 / 24



compulsive shopping is not allowed. . .

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x , y〉 | C 〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x , y〉 | C 〈y〉))
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compulsive shopping is not allowed. . . or is it?

A different typing derivation for the compulsive shopper

A(x)
M
= x!add.A〈x〉

R = !add.R ⊕ !pay.!end
R1 = !add.R

x : R ` A〈x〉

x : R1 ` x!add.A〈x〉
R 6 R1

x : R ` x!add.A〈x〉

I R 6 R1 is used in the typing derivation of a recursive process

I “infinitely many” usages of fair subtyping (R 6 R1) may have
the same overall effect of unfair subtyping (R 6 R∞)

I well-typed processes should only be allowed to perform a
bounded number of casts
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cast boundedness

Γ `n P

I P is well-typed in Γ and has rank n

I n is an upper bound to the number of casts performed by P

x : R `n A〈x〉

x : R1 `n x!add.A〈x〉
R 6 R1

x : R `n+1 x!add.A〈x〉

I we cannot assign a finite rank to this typing derivation
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fair termination, at last

Theorem
If ∅ `n P, then P is fairly terminating

Proof idea.
Show that typing is preserved by reductions (subject reduction):

I if Γ `n P and P −→ Q, then Γ `n Q
Define a measure for well-typed processes that includes n as well as
the effort required to terminate all open sessions:

I Γ `µ P

Show that for every non-terminated, well-typed program there exists
a reduct with a strictly smaller measure:

I if ∅ `µ P , either P = done or P −→ Q and ∅ `ν Q where ν < µ

Note: the measure may increase if new sessions are opened.
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summary

A compositional static analysis ensuring fair termination

I well-typed programs terminate, if the fairness assumption is true

I infinite executions are possible, but only in principle

A nice application of generalized inference systems

I definition of fair subtyping

I typing corules (not discussed in this talk, see below)

Want more?

I many simplifications in this talk

I see Ciccone and Padovani [2021b] for details
(higher-order sessions, proofs, type checking algorithm, . . . )
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ongoing and future work

Type checker implementation

I ready, soon available on my home page

Other communication models

I multiparty sessions (straightforward)

I actors, many-to-one communications (challenging)

thank you!
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