
chaperone contracts for higher-order sessions

Hernán Melgratti
University of Buenos Aires

Argentina

Luca Padovani
University of Torino

Italy



sessions and session types

p qsession a

!int.!int.?int ?int.?int.!int

I session = private communication channel with 2 endpoints
I session type = protocol specification as a type (≈ FSA)

2 / 13



pairing session types with contracts

Motivation
I finding more bugs and making it easier to locate their cause

!int.!int.?int

1 send any number
2 send a number n 6= 0
3 receive a numberm > 0

3 / 13



sessions as non-uniformmutable objects

Contracts for higher-order functions and mutable objects
I Findler & Felleisen, ICFP 2002
I Strickland, Tobin-Hochstadt, Findler & Flatt, OOPSLA 2012

higher-order functions ⇐⇒ higher-order sessions
put and get ⇐⇒ send and recv

Differences
I order of operations constrained by the session type
I type of messagesmay change over time
I contract of messagesmay change over time

4 / 13



a model of functions, sessions and contracts

functional core

 x
λx.e
e1 e2

threads and sessions
[Gay & Vasconcelos, JFP 2010]

 send
recv
· · ·

monitors and blames
[Findler & Felleisen, ICFP 2002]

[
[e]c,p,q
blame p

contracts for sessions
[this work]

 send_c c d
recv_c c d
· · ·

5 / 13



sample contract

!int.!int.?int

1 send any number

2 send a number n 6= 0

3 receive a numberm ≥ 0

send_c
any_c
(send_c

(flat_c (6= 0))
(recv_c

(flat_c (≥ 0))
end_c))

6 / 13



sample contract

!int.!int.?int

1 send any number

2 send a number n 6= 0

3 receive a numberm ≥ 0

send_c
any_c
(send_c

(flat_c (6= 0))
(recv_c

(flat_c (≥ 0))
end_c))

6 / 13



sample contract

!int.!int.?int

1 send any number

2 send a number n 6= 0

3 receive a numberm ≥ 0

send_c
any_c
(send_c

(flat_c (6= 0))
(recv_c

(flat_c (≥ 0))
end_c))

6 / 13



sample program

let a = connect server in a : !int.!int.?int
let a = send 1234 a in a : !int.?int
let a = send 56 a in a : ?int
let m, a = recv a in a : end
...

Communication primitives always return the endpoint being used
I the type of the endpoint is updated at each rebinding
I the contract of the endpoint can be updated as well!

7 / 13



first-order monitored output

sendm [a]send_c c d,p,q ‖ recv a

→ [send [m]c,q,p a]d,p,q ‖ recv a

→∗ [sendm a]d,p,q ‖ recv a

→ [a]d,p,q ‖ (m, a)

8 / 13



first-order monitored output

sendm [a]send_c c d,p,q ‖ recv a

→ [send [m]c,q,p a]d,p,q ‖ recv a

→∗ [sendm a]d,p,q ‖ recv a

→ [a]d,p,q ‖ (m, a)

m checked against c

8 / 13



first-order monitored output

sendm [a]send_c c d,p,q ‖ recv a

→ [send [m]c,q,p a]d,p,q ‖ recv a

→∗ [sendm a]d,p,q ‖ recv a

→ [a]d,p,q ‖ (m, a)

m checked against c

m satisfies c

8 / 13



first-order monitored output

sendm [a]send_c c d,p,q ‖ recv a

→ [send [m]c,q,p a]d,p,q ‖ recv a

→∗ [sendm a]d,p,q ‖ recv a

→ [a]d,p,q ‖ (m, a)

m checked against c

m satisfies c

a’s contract updated m sent

8 / 13



higher-order monitored output

send b [a]send_c c d,p,q ‖ recv a

→ [send [b]c,q,p a]d,p,q ‖ recv a

→ [a]d,p,q ‖ ([b]c,q,p, a)

9 / 13



higher-order monitored output

send b [a]send_c c d,p,q ‖ recv a

→ [send [b]c,q,p a]d,p,q ‖ recv a

→ [a]d,p,q ‖ ([b]c,q,p, a)

9 / 13



higher-order monitored output

send b [a]send_c c d,p,q ‖ recv a

→ [send [b]c,q,p a]d,p,q ‖ recv a

→ [a]d,p,q ‖ ([b]c,q,p, a)

b sent with c
a’s contract updated

9 / 13



who gets the blame?

p q r• a • b

recv_c
(send_c any_c end_c)
end_c

send_c (flat_c (> 0)) end_c

I q sends b to p
I p thinks that it is safe to send any number, e.g. −1, on b
I r expects to receive a positive number from p
I by the time the violation is detected, q is no longer involved

10 / 13



honest modules won’t be blamed

Local compliance⇒ Global blame freedom
If p complies with the contracts it knows, then no one will blame p

It’s difficult to formalize what “knowing a contract” means
I contracts are decomposed and turned inside out
I not all endpoints have a contract
I . . .

We prove the result using an alternative semantics
I makes it easy to identify syntactically the contracts known by p
I we show that the two semantics are essentially equivalent

11 / 13



honest modules won’t be blamed

Local compliance⇒ Global blame freedom
If p complies with the contracts it knows, then no one will blame p

It’s difficult to formalize what “knowing a contract” means
I contracts are decomposed and turned inside out
I not all endpoints have a contract
I . . .

We prove the result using an alternative semantics
I makes it easy to identify syntactically the contracts known by p
I we show that the two semantics are essentially equivalent

11 / 13



an OCaml implementation

contracts monitored
endpoints

monitored
session API

FuSe
[Padovani, JFP 2017]

endpoints session API

I modular design, portable to other session libraries
12 / 13



summary

Contributions
I monitoring system for sessions with dynamic contract update
I blame correctness

Other features
I dependent contracts
I contracts for recursive and branching protocols

Open issues
I functions in messages cannot carry session endpoints
I . . .

THANKS!
13 / 13


	Introduction and motivation
	Model
	Proving a blame theorem
	Implementation
	Concluding remarks

