Types and Contracts for Binary Sessions

from theory to practice

Luca Padovani

Dipartimento di Informatica, Universita di Torino

Introduction to binary sessions

binary sessions in a nutshell

~|
=

®a:T b:

e private communication channel between two processes
e each endpoint has a session type (= protocol description)

e peer endpoints have dual session types

1/28

some properties and methods to enforce them

property counterexample method at
protocol send send
fidelity recv recv
session compile
types time*
comm. safety | send int recv bool
blame send 0 recv (#0) } contracts runtime

correctness

2/28

session types [Honda, 1993, Honda et al., 1998]

T,S end end of conversation
't. T send message of type t
?t. T receive message of type t

TaS choose T or S
T&S offer T and S

?int. ?int. !int

3/28

example

let client a =

let a
let a
let T,

a:

send 123 a in
send 45 a in

recv a in

o o

lint.!int.7int
lint.7int
7int

end

4/28

example

let client a = a lint.!int.%7int
let a = send 123 a in a lint.7int
let a = send 45 a in a ?7int
let r, a = recv a in a end

let server b = b ?int.7int.'!'int
let x, b = recv b in b 7int.!int
let y, b = recv b in b lint
let b = send (x mod y) b in b end

4/28

example

let client a = a lint.!int.%7int
let a = send 123 a in a lint.7int
let a = send 45 a in a ?7int
let r, a = recv a in a end
let server b = b ?int.7int.!int
let x, b = recv b in b 7int.!int
let y, b = recv b in b lint
let b = send (x mod y) b in b end
let main () =
let a, b = open () in (x a b = dual types *)

spawn server b;

spawn client a

4/28

endpoints are linear resources

let client a = a lint.!int.?7int
let _ = send 123 a in a lint.!int.%7int
let a = send 234 a in a : !int.!int 8
let = send 45 a in a ?int
let r, a = recv a in a end

e the “same” endpoint cannot be used more than once

= substructural type system

5/28

type soundness [Gay and Vasconcelos, 2010]

session API

open : unit— T x T duality
send : t—!'t. T — T
recv : ?t. T —tx T

+ endpoint linearity

Theorem (soundness)
Well-typed programs satisfy protocol fidelity & communication
safety.

6/28

Sessions for real

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123, ']

® message = payload + continuation

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123, '] c?(x, a)

® message = payload + continuation

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123,c'].c’1[45, "] c?(x, a)

® message = payload + continuation

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123,c'].c’1[45, "] c?(x,a).a?(y, b)

® message = payload + continuation

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123,c'].c"1[45,c").c"2(r, d) c?(x,a).a?(y, b)

® message = payload + continuation

7/28

let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]

Sessions in style

c![123,c'].c"1[45,c").c"2(r, d) c?(x,a).a?(y, b).b'[x %y, c"”

® message = payload + continuation

7/28

binary sessions can be encoded into the linear 7-calculus

Relevant literature

e Kobayashi, Pierce, and Turner [1999]

e Kobayashi [2002]

e Demangeon and Honda [2011]

e Dardha, Giachino, and Sangiorgi [2017]

Lifted features and properties

e communication safety
e race freedom
e subtyping for session types

8/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

<int X a.>

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(int x (int x ,0),)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(int x (int x (e, int X),e),)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(int X (int X (e, int X (e,0)) o) o)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c'].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(e, int x) (int X (int X (e int X (e, 0)) @) o)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(o, int x (int X ,)) (int X (int X (e int X (e, 0)) @) o)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(o int x (int x (e,int x (e @)) @)) (int X (int X (e,int X (e, e)) e) @)

9/28

a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

(o int x (int x (e,int x (e @)) @)) (int X (int X (e,int X (e, e)) e) @)

(o int X (int X (e,int x (o @)) @))
(int x (int X (e, int X (e,0)) o) o)

9/28

duality as equality [Padovani, 2017b]

Proposition (duality as equality)
If T ~ (t,s), then T ~ (s, t)

Things we get for free

e duality

10/28

duality as equality [Padovani, 2017b]

Proposition (duality as equality)
If T ~ (t,s), then T ~ (s, t)

Things we get for free

e duality

e session type inference (lots of previous attempts!)

10/28

session API, encoded [Padovani, 2017b]

® represent session types in encoded form. ..
e ...as if continuations were exchanged. ..

e ...but don't exchange continuations

session API

open : unit— T X T ~ unit— (o, f) X (B,q)
send : t—=>1t. T =T ~ t—(etx{af))— (B a)
recv : 7t.T = tx T ~ (tx{(a,p),e) = tx{apf)

11/28

the ostrich approach to linearity

e ignore linearity at the type level
e detect linearity violations at runtime (easy and cheap!)

e many linearity violations are statically detected anyway

12/28

runtime detection of linearity violations

Strategy

e endpoint a? = pair with channel a and flag p

e 2" is used = reset flag imperatively and regenerate pair

e a'f is used = raise exception

Proposition
A linearity exception is raised as soon as (but not before) a

linearity violation occurs

Observation
Actual measurements indicate that the overhead of runtime

linearity violation detection is negligible [Padovani, 2017b]

13/28

Context-free session types

modeling a non-uniform object using sessions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv c in
empty (non_empty x c)
| Stop ¢ = ¢
and non_empty x ¢ = (x x on top *)
match branch c¢ with
| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y c)
| Pop ¢ — send x ¢
in empty

14/28

modeling a non-uniform object using sessions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv c in
empty (non_empty x c)
| Stop ¢ =+ ¢ B dead code
and non_empty x ¢ = (x x on top *)

match branch ¢ with

| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y c)
| Pop ¢ = send x c 2 dead code
in empty

14/28

from ordinary to context-free session types

Ordinary session types

e sequential composition limited to prefixes ?a.S

e language of (finite) traces is regular

Context-free session types [Thiemann and Vasconcelos,
2016]
e general form of sequential composition T.S

e language of (finite) traces is context-free

e typability++, precision-+-+

15/28

Thiemann and Vasconcelos’s type system

Key ingredients
e monoidal laws for sequential composition, e.g.

[Fe:T.(S.R)
Fe:(T.S).R

e polymorphic recursion

Observation
e type inference is undecidable

e type checking is arguably more difficult (open problem)

16/28

resuming endpoints [Padovani, 2017a, 2019]

If f: T — end, then

e (f u) carries out protocol T on u, and

e returns the expired endpoint u:end

17/28

resuming endpoints [Padovani, 2017a, 2019]

If f: T — end, then

e (f u) carries out protocol T on u, and

e returns the expired endpoint u:end

But then f : T.5 — S, meaning that

e (f u) carries out protocol T on u, and

e returns the endpoint u:S

17/28

resuming endpoints [Padovani, 2017a, 2019]

If f: T — end, then

e (f u) carries out protocol T on u, and

e returns the expired endpoint u:end

But then f : T.5 — S, meaning that

e (f u) carries out protocol T on u, and

e returns the endpoint u:S
Idea

ecoercef: T —wend=T.5S— S

e ask programmer to place coercions @,

17/28

resuming endpoints [Padovani, 2017a, 2019]

If f: T — end, then

e (f u) carries out protocol T on u, and

e returns th€ expired endpoint u:end
an

But then f : T.5 — S, meaning that

e (f u) carries out protocol T on u, and

e returns the endpoint u:S
Idea

ecoercef: T —wend=T.5S— S

e ask programmer to place coercions @,

17/28

session types with endpoint identities|[Padovani, 2017a, 2019]

[T]e

session APl with endpoint identities

open : unit — Jp,0.([T], x [T]s)
send : t—['t.T],— [Tl
recv : [?t.T], >t x[T],
Q; : ([T]lo— [end]o) = [T.S]o — [S],

Theorem (soundness)

Well-typed programs (with coercions) satisfy. . .

18/28

the stack with coercions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv u in
empty (non_empty x @> c)
| Stop ¢ = ¢
and non_empty x ¢ =
match branch c¢ with
| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y @ c)
| Pop ¢ — send x ¢

in empty

19/28

Chaperone contracts for sessions

from types to contracts [Melgratti and Padovani, 2017]

lint. 'int. 7int

1. send a number
2. send a number

3. receive a number

20/28

from types to contracts [Melgratti and Padovani, 2017]

lint. 'int. 7int

1. send a number
2. send a number #£ 0

3. receive a number > 0

. 1(# 0).7(> 0)

@ monitor sessions at runtime

e blame guilty process when a contract violation is detected

20/28

a DSL for contracts

(¥ as before *)

let server b

let contract
send_c any_c QG
send_c (flat_c (# 0)) @@
recv_c (flat_c (& 0)) @@

end_c

let server_chan = register server contract "Server"

let main () =

let b = connect server_chan "Main" in

21/28

monitored session endpoints

]

® C is the contract associated with u
e p identifies the guilty partner for values received from u

e g identifies the guilty partner for values sent on u

22/28

runtime monitoring: first-order example

Src

X

[a]?*.?*ﬁquain [b] 1%.1(5£0).7(>0),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b = send x b in
let b = send y b in
let w, b = recv b in

23/28

runtime monitoring: first-order example

Src

y

[a]?*7SrC7Main [b] 1%.1(5£0).7(>0),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b
let b
let w, b = recv b in

send x b in

send y b in

23/28

runtime monitoring: first-order example

Src

[a]end,Squain [b] k. 1(£0).7(>0),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b
let b
let w, b = recv b in

send x b in

send y b in

23/28

runtime monitoring: first-order example

Src

X

[a]end,Squain [b] k. 1(£0).7(>0),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b = send x b in
let b = send y b in
let w, b = recv b in

23/28

runtime monitoring: first-order example

Src

y

[a]end,Squain [b]!(#0).?(20),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b
let b
let w, b = recv b in

send x b in

send y b in

23/28

runtime monitoring: first-order example

Src

w

[a]end,Squain [b]?(zo),ServenMain

let main () =
let x, a = recv a in
let y, a = recv a in
let b = send x b in
let b = send y b in
let w, b = recv b in

23/28

runtime monitoring: first-order example

Src

[a]end,Src,Main [b]end,Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b = send x b in
let b = send y b in
let w, b = recv b in

23/28

runtime monitoring: higher-order example

[a]?* . 7%,Src,Main

let main () =
let b = send a b in
let w, b = recv b in

[b] 1(?%.7(#£0)).?(>0),Server,Main

b : !'(?int.?int).7int
b : 7int
b : end

24/28

runtime monitoring: higher-order example

Src Server

[a]?*.?*,Src,l\/Iain

[b] 1(?%.7(#£0)).?(>0),Server,Main

let main () = ... b ! (?7int.7int) .7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

@ Server

[[a]?* . ?*,Src.,l\/lain]’?* .?(#0),Main,Server

[b] 1(?%.7(#£0)).?(>0),Server,Main

let main () = ... b : !'(7int.?7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

&

Server
[[a]?* . ?*,Src.,l\/lain]’?* .?(#0),Main,Server

[b]?(zo),ServenMain

let main () = ... b : !'(7int.?7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

X

Server
[[a]?* . ?*,Src.,l\/lain]’?* .?(#0),Main,Server

[b]?(zo),ServenMain

let main () = ... b : !'(7int.?7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

Yy
[[a]?*,Src,l\/lain]?(#0),Main,Server

Server

[b]?(zo),ServenMain

let main () = ... b : !'(7int.7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

&

Server

[[a]end,Src,I\/Iain]end,Main,Server

[b] ?(>0),Server,Main

let main () = ... b : !'(7int.?7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

runtime monitoring: higher-order example

&

Server

[[a]end,Src,I\/Iain]end,Main,Server

[b] ?(>0),Server,Main

let main () = ... b : !'(7int.7int).7%7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end

24/28

an example of dependent contract

let contract =
send_d any_c @@ fun x —
send_d (flat_c (# 0)) @@ fun y —
recv_c (flat_c¢ (fun w > x == (x / y) * y + w)) @@

end_c

e contracts may depend on previously exchanged messages

e send_c is a degenerate version of send_d

25/28

blame correctness

Definition (local honesty)
A process is locally honest if it complies with the contracts it is
aware of undecidable!

Theorem (blame correctness)
Locally honest processes are never blamed, even if they interact
with dishonest processes

26/28

Concluding remarks

further developments

Safety properties

e protocol compliance (this talk)

e deadlock freedom

Liveness properties

e fair subtyping (aka fair testing, but for session types)

e lock freedom

Static linearity
e type inference for Linear Haskell (ongoing)

27/28

FuSe available from my home page

Thank You

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html

References

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited.
Inf. Comput., 256:253-286, 2017. (J

Romain Demangeon and Kohei Honda. Full abstraction in a subtyped
pi-calculus with linear types. In Proceedings of CONCUR’'11, LNCS 6901,
pages 280-296. Springer, 2011.

Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for
asynchronous session types. J. Funct. Program., 20(1):19-50, 2010. |

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR '93,
4th International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer
Science, pages 509-523. Springer, 1993. 5

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based
programming. In Chris Hankin, editor, Programming Languages and
Systems - ESOP'98, 7th European Symposium on Programming, Held as
Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS'98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, volume 1381 of Lecture Notes in Computer Science, pages
122-138. Springer, 1998. (]

28/28

http://dx.doi.org/10.1016/j.ic.2017.06.002
http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567

Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary
Colloquium of UNU/IIST, LNCS 2757, pages 439-453. Springer, 2002.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the
pi-calculus. ACM Trans. Program. Lang. Syst., 21(5):914-947, 1999.]

Hernan C. Melgratti and Luca Padovani. Chaperone contracts for higher-order
sessions. PACMPL, 1(ICFP):35:1-35:29, 2017. a

Luca Padovani. Context-free session type inference. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer
Science, pages 804-830. Springer, 2017a. |

Luca Padovani. A simple library implementation of binary sessions. J. Funct.
Program., 27:e4, 2017b. {]

Luca Padovani. Context-free session type inference. ACM Trans. Program.
Lang. Syst., 41(2):9:1-9:37, March 2019. ISSN 0164-0925. a

Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of

28/28

http://dx.doi.org/10.1145/330249.330251
http://dx.doi.org/10.1145/3110279
http://dx.doi.org/10.1007/978-3-662-54434-1_30
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1145/3229062

the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages
462-475. ACM, 2016. [

28/28

http://dx.doi.org/10.1145/2951913.2951926

	Introduction to binary sessions
	Sessions for real
	Context-free session types
	Chaperone contracts for sessions
	Concluding remarks
	References

