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Introduction to binary sessions



binary sessions in a nutshell

~|
=

®a:T b:

e private communication channel between two processes
e each endpoint has a session type (= protocol description)

e peer endpoints have dual session types
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some properties and methods to enforce them

property counterexample method at
protocol send send
fidelity recv recv
session  compile
types time*
comm. safety | send int recv bool
blame send 0 recv (#0) } contracts runtime

correctness
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session types [Honda, 1993, Honda et al., 1998]

T,S end end of conversation
't. T send message of type t
?t. T receive message of type t

TaS choose T or S
T&S offer T and S

?int. ?int. !int
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example

let client a =

let a
let a
let T,

a:

send 123 a in
send 45 a in

recv a in

o o

lint.!int.7int
lint.7int
7int

end
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example

let client a = a lint.!int.%7int
let a = send 123 a in a lint.7int
let a = send 45 a in a ?7int
let r, a = recv a in a end

let server b = b ?int.7int.'!'int
let x, b = recv b in b 7int.!int
let y, b = recv b in b lint
let b = send (x mod y) b in b end
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example

let client a = a lint.!int.%7int
let a = send 123 a in a lint.7int
let a = send 45 a in a ?7int
let r, a = recv a in a end
let server b = b ?int.7int.!int
let x, b = recv b in b 7int.!int
let y, b = recv b in b lint
let b = send (x mod y) b in b end
let main () =
let a, b = open () in (x a b = dual types *)

spawn server b;

spawn client a
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endpoints are linear resources

let client a = a lint.!int.?7int
let _ = send 123 a in a lint.!int.%7int
let a = send 234 a in a : !int.!int 8
let = send 45 a in a ?int
let r, a = recv a in a end

e the “same” endpoint cannot be used more than once

= substructural type system
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type soundness [Gay and Vasconcelos, 2010]

session API

open : unit— T x T duality
send : t—!'t. T — T
recv : ?t. T —tx T

+ endpoint linearity

Theorem (soundness)
Well-typed programs satisfy protocol fidelity & communication
safety.
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Sessions for real



let’s play a game

Implement the following interaction with channels

c![123].c![45].c?(r) c?(x).c?(y).c![x % y]
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binary sessions can be encoded into the linear 7-calculus

Relevant literature

e Kobayashi, Pierce, and Turner [1999]

e Kobayashi [2002]

e Demangeon and Honda [2011]

e Dardha, Giachino, and Sangiorgi [2017]

Lifted features and properties

e communication safety
e race freedom
e subtyping for session types
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a welcome side effect on types: duality simplifies!

(t,s) = type of a one-shot channel for receiving t or sending s

c![123,c].c"1[45, c"].c"?(r, d) c?(x,a).a?(y, b).b'[x %y, "

<int X a.>
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(t,s) = type of a one-shot channel for receiving t or sending s
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(o int x (int x (e,int x (e @)) @)) (int X (int X (e,int X (e, e)) e) @)

(o int X (int X (e,int x (o @)) @))
(int x (int X (e, int X (e,0)) o) o)
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duality as equality [Padovani, 2017b]

Proposition (duality as equality)
If T ~ (t,s), then T ~ (s, t)

Things we get for free

e duality
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duality as equality [Padovani, 2017b]

Proposition (duality as equality)
If T ~ (t,s), then T ~ (s, t)

Things we get for free

e duality

e session type inference (lots of previous attempts!)
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session API, encoded [Padovani, 2017b]

® represent session types in encoded form. ..
e ...as if continuations were exchanged. ..

e ...but don't exchange continuations

session API

open : unit— T X T ~ unit— (o, f) X (B,q)
send : t—=>1t. T =T ~ t—(etx{af))— (B a)
recv : 7t.T = tx T ~ (tx{(a,p),e) = tx{apf)
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the ostrich approach to linearity

e ignore linearity at the type level
e detect linearity violations at runtime (easy and cheap!)

e many linearity violations are statically detected anyway
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runtime detection of linearity violations

Strategy

e endpoint a? = pair with channel a and flag p

e 2" is used = reset flag imperatively and regenerate pair

e a'f is used = raise exception

Proposition
A linearity exception is raised as soon as (but not before) a

linearity violation occurs

Observation
Actual measurements indicate that the overhead of runtime

linearity violation detection is negligible [Padovani, 2017b]
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Context-free session types



modeling a non-uniform object using sessions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv c in
empty (non_empty x c)
| Stop ¢ = ¢
and non_empty x ¢ = (x x on top *)
match branch c¢ with
| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y c)
| Pop ¢ — send x ¢
in empty

14/28



modeling a non-uniform object using sessions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv c in
empty (non_empty x c)
| Stop ¢ =+ ¢ B dead code
and non_empty x ¢ = (x x on top *)

match branch ¢ with

| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y c)
| Pop ¢ = send x c 2 dead code
in empty
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from ordinary to context-free session types

Ordinary session types

e sequential composition limited to prefixes ?a.S

e language of (finite) traces is regular

Context-free session types [Thiemann and Vasconcelos,
2016]
e general form of sequential composition T.S

e language of (finite) traces is context-free

e typability++, precision-+-+
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Thiemann and Vasconcelos’s type system

Key ingredients
e monoidal laws for sequential composition, e.g.

[Fe:T.(S.R)
Fe:(T.S).R

e polymorphic recursion

Observation
e type inference is undecidable

e type checking is arguably more difficult (open problem)
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resuming endpoints [Padovani, 2017a, 2019]

If f: T — end, then

e (f u) carries out protocol T on u, and

e returns the expired endpoint u:end
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session types with endpoint identities|[Padovani, 2017a, 2019]

[T]e

session APl with endpoint identities

open : unit — Jp,0.([T], x [T]s)
send : t—['t.T],— [Tl
recv : [?t.T], >t x[T],
Q; : ([T]lo— [end]o) = [T.S]o — [S],

Theorem (soundness)

Well-typed programs (with coercions) satisfy. . .
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the stack with coercions

let stack =
let rec empty c =
match branch c with
| Push ¢ — let x, ¢ = recv u in
empty (non_empty x @> c)
| Stop ¢ = ¢
and non_empty x ¢ =
match branch c¢ with
| Push ¢ — let y, ¢ = recv c in
non_empty x (non_empty y @ c)
| Pop ¢ — send x ¢

in empty
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Chaperone contracts for sessions



from types to contracts [Melgratti and Padovani, 2017]

lint. 'int. 7int

1. send a number
2. send a number

3. receive a number

20/28



from types to contracts [Melgratti and Padovani, 2017]

lint. 'int. 7int

1. send a number
2. send a number #£ 0

3. receive a number > 0

. 1(# 0).7(> 0)

@ monitor sessions at runtime

e blame guilty process when a contract violation is detected
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a DSL for contracts

(¥ as before *)

let server b

let contract
send_c any_c QG
send_c (flat_c (# 0)) @@
recv_c (flat_c (& 0)) @@

end_c

let server_chan = register server contract "Server"

let main () =

let b = connect server_chan "Main" in

21/28



monitored session endpoints

]

® C is the contract associated with u
e p identifies the guilty partner for values received from u

e g identifies the guilty partner for values sent on u
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runtime monitoring: first-order example

Src

X

[a]?*.?*ﬁquain [b] 1%.1(5£0).7(>0),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b = send x b in
let b = send y b in
let w, b = recv b in
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runtime monitoring: first-order example

Src

y

[a]end,Squain [b]!(#0).?(20),Server,Main

let main () =
let x, a = recv a in
let y, a = recv a in
let b
let b
let w, b = recv b in

send x b in

send y b in
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runtime monitoring: first-order example

Src

[a]end,Src,Main [b]end,Server,Main

let main () =
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runtime monitoring: higher-order example

[a]?* . 7%,Src,Main

let main () =
let b = send a b in
let w, b = recv b in

[b] 1(?%.7(#£0)).?(>0),Server,Main

b : !'(?int.?int).7int
b : 7int
b : end
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Src Server

[a]?*.?*,Src,l\/Iain

[b] 1(?%.7(#£0)).?(>0),Server,Main

let main () = ... b ! (?7int.7int) .7int
let b = send a b in b : 7int
let w, b = recv b in ... b : end
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an example of dependent contract

let contract =
send_d any_c @@ fun x —
send_d (flat_c (# 0)) @@ fun y —
recv_c (flat_c¢ (fun w > x == (x / y) * y + w)) @@

end_c

e contracts may depend on previously exchanged messages

e send_c is a degenerate version of send_d
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blame correctness

Definition (local honesty)
A process is locally honest if it complies with the contracts it is
aware of undecidable!

Theorem (blame correctness)
Locally honest processes are never blamed, even if they interact
with dishonest processes
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Concluding remarks



further developments

Safety properties

e protocol compliance (this talk)

e deadlock freedom

Liveness properties

e fair subtyping (aka fair testing, but for session types)

e lock freedom

Static linearity
e type inference for Linear Haskell (ongoing)
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FuSe available from my home page

Thank You


http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
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