
Smooth Orchestrators

Cosimo Laneve, Luca Padovani

University of Bologna, University of Urbino

29 march 2006

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 1 / 22

Summary

Background

Formal development

Implementation

Extensions and concluding remarks

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 2 / 22

Well-known workflow patterns: synchronization

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 3 / 22

Well-known workflow patterns: n-out-of-m

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 4 / 22

Synchronization patterns

Define a primitive construct that models synchronization patterns
Join-patterns in JoCaml:

let create_ref(y0) =

let state(y) | get() = state(y) | reply y to get

and state(y) | put(new_y) = state(new_y) | reply to put in

state(y0) | reply get,put

;;

Remark: atomic reduction

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 5 / 22

Similar construct, different context

A synchronization pattern implemented in the join calculus is

permanent

closed

Orchestration of services is not necessarily permanent:

ephemeral synchronization

extending existing services

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 6 / 22

Similar construct, different context

A synchronization pattern implemented in the join calculus is

permanent

closed

Orchestration of services is not necessarily permanent:

ephemeral synchronization

extending existing services

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 6 / 22

π with orchestrators

Asynchronous π-calculus with orchestrators:

P ::= processes
0 (nil)

| x [ũ] (output)
|

∑
i∈I Ji . Pi (orchestrator)

| (x)P (new)
| P | P (parallel)
| !P (replication)

J ::= join patterns
| x(ũ) (input)
| J & J (join)

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 7 / 22

Example: n-out-of-m

a end(v) .

b start[v] | c start[v] | d start[v]
| b end(x) & c end(y) . e start[x , y]

+ b end(x) & d end(z) . e start[x , z]
+ c end(y) & d end(z) . e start[y , z]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 8 / 22

Example: n-out-of-m

a end(v) .

b start[v] | c start[v] | d start[v]
| b end(x) & c end(y) . e start[x , y]

+ b end(x) & d end(z) . e start[x , z]
+ c end(y) & d end(z) . e start[y , z]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 8 / 22

Issues

Linearity is hard to enforce statically:

x [a, a] | x(u, v) . u(y) & v(z) .P → a(y) & a(z) .P{a/u, a/v}

Global consensus:
Take x(u) & y(v) . P located at `

If x and y are not located at ` this reduction requires
non-local – global – information
Migrating the process does not help either
(and who likes mobile agents anyway?)

These are non-issues in the join-calculus:

joined channels are fresh. . .

. . . hence they are co-located

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 9 / 22

Issues

Linearity is hard to enforce statically:

x [a, a] | x(u, v) . u(y) & v(z) .P → a(y) & a(z) .P{a/u, a/v}

Global consensus:
Take x(u) & y(v) . P located at `

If x and y are not located at ` this reduction requires
non-local – global – information
Migrating the process does not help either
(and who likes mobile agents anyway?)

These are non-issues in the join-calculus:

joined channels are fresh. . .

. . . hence they are co-located

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 9 / 22

Issues

Linearity is hard to enforce statically:

x [a, a] | x(u, v) . u(y) & v(z) .P → a(y) & a(z) .P{a/u, a/v}

Global consensus:
Take x(u) & y(v) . P located at `

If x and y are not located at ` this reduction requires
non-local – global – information
Migrating the process does not help either
(and who likes mobile agents anyway?)

These are non-issues in the join-calculus:

joined channels are fresh. . .

. . . hence they are co-located

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 9 / 22

Our solution: co-location constraints

P ::= processes
. . .

| (x @ y)P (new)

J ::= join patterns
| x(ũ @ ṽ) (input)
| J & J (join)

(x@y)P means “create x at the same location as y”

(x@x)P means “create x at whatever location”

x(u@u, v@v) . P means “receive u and v no matter what their
location is”

x(u@u, v@u) . P means “receive u and v if they are co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 10 / 22

Our solution: co-location constraints

P ::= processes
. . .

| (x @ y)P (new)

J ::= join patterns
| x(ũ @ ṽ) (input)
| J & J (join)

(x@y)P means “create x at the same location as y”

(x@x)P means “create x at whatever location”

x(u@u, v@v) . P means “receive u and v no matter what their
location is”

x(u@u, v@u) . P means “receive u and v if they are co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 10 / 22

Our solution: co-location constraints

P ::= processes
. . .

| (x @ y)P (new)

J ::= join patterns
| x(ũ @ ṽ) (input)
| J & J (join)

(x@y)P means “create x at the same location as y”

(x@x)P means “create x at whatever location”

x(u@u, v@v) . P means “receive u and v no matter what their
location is”

x(u@u, v@u) . P means “receive u and v if they are co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 10 / 22

Our solution: co-location constraints

P ::= processes
. . .

| (x @ y)P (new)

J ::= join patterns
| x(ũ @ ṽ) (input)
| J & J (join)

(x@y)P means “create x at the same location as y”

(x@x)P means “create x at whatever location”

x(u@u, v@v) . P means “receive u and v no matter what their
location is”

x(u@u, v@u) . P means “receive u and v if they are co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 10 / 22

Co-location constraints: reduction semantics

Co-location relation:

(base)

(x̃ @ ỹ)(u @ v) ` u_v

(lift)

x̃ @ ỹ ` u_v u, v 6= z

(x̃ @ ỹ)(z @ z ′) ` u_v

Reduction:

z̃ @ ỹ ` a_b

(z̃ @ ỹ)
(
x [a] | y [b] | x(u @ u) & y(v @ u) . P

)
→ (z̃ @ ỹ)P{a, b/u, v}

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 11 / 22

Co-location constraints: reduction semantics

Co-location relation:

(base)

(x̃ @ ỹ)(u @ v) ` u_v

(lift)

x̃ @ ỹ ` u_v u, v 6= z

(x̃ @ ỹ)(z @ z ′) ` u_v

Reduction:

z̃ @ ỹ ` a_b

(z̃ @ ỹ)
(
x [a] | y [b] | x(u @ u) & y(v @ u) . P

)
→ (z̃ @ ỹ)P{a, b/u, v}

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 11 / 22

Checking co-location

The process
w(x@x , y@y) . x(u@u) & y(v@u) . P

raises a runtime error if provided with a message

w [c , d]

where c and d are not co-located

the message on w is lost forever

we want to check co-location statically through a type system

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 12 / 22

Checking co-location

(nil)

Λ ` 0
(output)

Λ ` x [ũ]

(par)

Λ ` P Λ ` Q

Λ ` P | Q

(bang)

Λ ` P

Λ ` !P

(orch)

Λ(u@u)(v@u) ` P Λ ` x_y

Λ ` x(u@u) & y(v@u) . P

(new)

Λ(x @ y) ` P

Λ ` (x @ y)P

A process P is distributable if ε ` P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 13 / 22

Checking co-location

(nil)

Λ ` 0
(output)

Λ ` x [ũ]

(par)

Λ ` P Λ ` Q

Λ ` P | Q

(bang)

Λ ` P

Λ ` !P

(orch)

Λ(u@u)(v@u) ` P Λ ` x_y

Λ ` x(u@u) & y(v@u) . P

(new)

Λ(x @ y) ` P

Λ ` (x @ y)P

A process P is distributable if ε ` P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 13 / 22

Subject reduction

Distributable processes reduce to distributable processes
Theorem (subject reduction): If

(x̃ @ ỹ) ` P, and

(x̃ @ ỹ)P → (x̃ @ ỹ)Q

then

(x̃ @ ỹ) ` Q

Lemma (substitution): Substitution cannot be defined for single names
only
Consider

(a@ a)(u @ u)(v @ u) ` u & v . 0 {a/v}

leads to
(a@ a)(u @ u) 6` u & a . 0

Subtitutions must preserve co-location

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 14 / 22

Subject reduction

Distributable processes reduce to distributable processes
Theorem (subject reduction): If

(x̃ @ ỹ) ` P, and

(x̃ @ ỹ)P → (x̃ @ ỹ)Q

then

(x̃ @ ỹ) ` Q

Lemma (substitution): Substitution cannot be defined for single names
only
Consider

(a@ a)(u @ u)(v @ u) ` u & v . 0 {a/v}

leads to
(a@ a)(u @ u) 6` u & a . 0

Subtitutions must preserve co-location

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 14 / 22

The smoothness restriction

We decouple the orchestrator from the continuation through the [[·]]
encoding

[[
∑
i∈I

Ji . Pi]] = (zi
i∈I)
(smooth orchestrator︷ ︸︸ ︷∑

i∈I
Ji . zi [ũi] |

∏
i∈I

zi (ũi) . [[Pi]]︸ ︷︷ ︸
continuation

)

The smooth orchestrator is now free to migrate

Proposition (encoding correctness): P is barbed congruent to [[P]]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 15 / 22

The smoothness restriction

We decouple the orchestrator from the continuation through the [[·]]
encoding

[[
∑
i∈I

Ji . Pi]] = (zi
i∈I)
(smooth orchestrator︷ ︸︸ ︷∑

i∈I
Ji . zi [ũi] |

∏
i∈I

zi (ũi) . [[Pi]]︸ ︷︷ ︸
continuation

)

The smooth orchestrator is now free to migrate

Proposition (encoding correctness): P is barbed congruent to [[P]]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 15 / 22

Implementation issues

Size of an orchestrator:

x1(ũ1 @ ṽ1) & · · · & xn(ũn @ ṽn) . z [ũ1 · · · ũn]

It may be encoded as

a vector with n + 1 names x1, · · · , xn, z
a vector of k1 + · · ·+ kn values, where ki = |ũi |:

I the integer value j at position h indicates that the j-th and h-th bound
names must be co-located

I the constant c at position h indicates that the h-th bound name must
be co-located with c

Co-location check: it basically amounts to comparing IP addresses

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 16 / 22

Compiling simple orchestrators

Turn an archestrator into a finite-state automaton (c.f. Le Fessant,
Maranget):

x(u) & y(v) . z [uv]

is compiled into

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 17 / 22

Compiling orchestrators with co-location constraints I

x(u@u, v@u) & y(w@w) . z [uvw]

is compiled into

+x = “there is a message
x [a, b] such that a and b are
co-located”

−x = “there is no message
x [a, b] such that a and b are
co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 18 / 22

Compiling orchestrators with co-location constraints II

Consider
x(u@u) & y(v@u) . P

Reception of a message on y depends on the message received on x .

What if the message on y arrives first?
We rewrite the orchestrator thus:

y(v@v) & x(u@v) . P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 / 22

Compiling orchestrators with co-location constraints II

Consider
x(u@u) & y(v@u) . P

Reception of a message on y depends on the message received on x .

What if the message on y arrives first?
We rewrite the orchestrator thus:

y(v@v) & x(u@v) . P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 / 22

Compiling orchestrators with co-location constraints II

Consider
x(u@u) & y(v@u) . P

Reception of a message on y depends on the message received on x .

What if the message on y arrives first?
We rewrite the orchestrator thus:

y(v@v) & x(u@v) . P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 / 22

Compiling orchestrators with co-location constraints III

Non-linearity increases significantly the complexity of matching
Consider

x(u@u, v@u,w@w) & x(a@a, b@b, c@b) . P

x [z , z , z] can be interpreted as either

x [z , z , z] or x [z , z , z]

Upon arrival of x [z , z , z] whichever transition is chosen might be the
wrong one

Neither of the two patterns is “more specific” than the other, they
cannot be sorted

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20 / 22

Compiling orchestrators with co-location constraints III

Non-linearity increases significantly the complexity of matching
Consider

x(u@u, v@u,w@w) & x(a@a, b@b, c@b) . P

x [z , z , z] can be interpreted as either

x [z , z , z] or x [z , z , z]

Upon arrival of x [z , z , z] whichever transition is chosen might be the
wrong one

Neither of the two patterns is “more specific” than the other, they
cannot be sorted

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20 / 22

Compiling orchestrators with co-location constraints III

Non-linearity increases significantly the complexity of matching
Consider

x(u@u, v@u,w@w) & x(a@a, b@b, c@b) . P

x [z , z , z] can be interpreted as either

x [z , z , z] or x [z , z , z]

Upon arrival of x [z , z , z] whichever transition is chosen might be the
wrong one

Neither of the two patterns is “more specific” than the other, they
cannot be sorted

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20 / 22

Compiling orchestrators: when and where?

The smooth orchestrator is usually small in size

The automaton is bigger, and it depends on the cardinality of name
occurrences which are not known until runtime

Two strategies:

eager compilation: bigger messages, needs patching

delayed compilation: smaller messages, burden on the receiver

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 21 / 22

Compiling orchestrators: when and where?

The smooth orchestrator is usually small in size

The automaton is bigger, and it depends on the cardinality of name
occurrences which are not known until runtime

Two strategies:

eager compilation: bigger messages, needs patching

delayed compilation: smaller messages, burden on the receiver

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 21 / 22

Extensions and conclusion

Further investigations:

Stronger type system
I eliminate runtime co-location checks
I technically challenging (dangerous variables)

x(u@α) & y(v@α) . P

x and y cannot be treated polymorphically w.r.t. α because of their
dependency

Expressivity (workflow patterns)

PiDuce prototype available at

http://www.cs.unibo.it/PiDuce/

(C# implementation)

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 22 / 22

http://www.cs.unibo.it/PiDuce/

	Synchronization patterns
	Formal development

