Cosimo Laneve, Luca Padovani

University of Bologna, University of Urbino

29 march 2006

«O>» «(Fr «Zr «E» Q>

@ Background
@ Formal development

@ Implementation

@ Extensions and concluding remarks

«O>» «(Fr «Zr «E» Q>

Well-known workflow patterns: synchronization

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 3/22

A
C

B

D

<Or < Fr <=

(=

Synchronization patterns

Define a primitive construct that models synchronization patterns
Join-patterns in JoCaml:

let create_ref(y0) =
let state(y) | get() = state(y) | reply y to get
and state(y) | put(new_y) = state(new_y) | reply to put in
state(y0) | reply get,put

0

Remark: atomic reduction)

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 5/22

@ permanent

A synchronization pattern implemented in the join calculus is
o closed

«O> «Fr o« > » Q>

Similar construct, different context

A synchronization pattern implemented in the join calculus is
® permanent

@ closed
Orchestration of services is not necessarily permanent:
@ ephemeral synchronization

@ extending existing services

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006

6/22

Asynchronous 7-calculus with orchestrators:

P = processes
0 (nil)

| X[d] (output)

| > ic;Ji> Pi (orchestrator)

()P (new)

| P|P (parallel)

| P (replication)
J = join patterns

| x() (input)

| J&J (join)

«O>» «(Fr «Zr «E» Q>

B

A
C

a_end(v) >
D

E

b_start|v] | c_start|v] | d_start[v]

«4O> «Fr «=>»

« =)

DA

Bemple powtotm

D

a_end(v) >

E

l’

b_start|v] | c_start|v] | d_start[v]

b_end(x) & c_end(y) > e_start|x, y|
+ b_end(x)&d_end(z) > e_start|x, z]

c-end(y) & d_end(z) > e_start|y, z|

«4O> «Fr «=>»

« =)

Linearity is hard to enforce statically:

X[a, a] | x(u,v)>u(y)&v(z)>P — a(y)&a(z)>P{a/u,a/v}

«O>» «(Fr «Zr «E» = Q>

Issues

Linearity is hard to enforce statically:
X[a, a] | x(u,v)>u(y)&v(z)>P — a(y)&a(z)>P{a/u,a/v}

Global consensus:
Take x(u)&y(v)>P located at ¢
o If x and y are not located at ¢ this reduction requires
non-local — global — information
@ Migrating the process does not help either
(and who likes mobile agents anyway?)

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 9/22

Issues

Linearity is hard to enforce statically:
X[a, a] | x(u,v)>u(y)&v(z)>P — a(y)&a(z)>P{a/u,a/v}

Global consensus:
Take x(u)&y(v)>P located at ¢

o If x and y are not located at ¢ this reduction requires
non-local — global — information

@ Migrating the process does not help either
(and who likes mobile agents anyway?)

These are non-issues in the join-calculus:
@ joined channels are fresh. ..

@ ... hence they are co-located

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 9/22

Ry,
I

processes
| (x@y)P (new)

J = join patterns
| x(uv@v) (input)
| J&J (join)

@ (x@y)P means “create x at the same location as y”

«AO> «F)>r «=)r « =)

DA

Our solution: co-location constraints

P = processes

(x@y)P (new)

J = join patterns
| x(u@v) (input)
| J&J (join)
@ (x@y)P means “create x at the same location as y”
@ (x©x)P means “create x at whatever location”
Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006

10/22

Our solution: co-location constraints

P = processes

(x@y)P (new)

J join patterns

| x(u@v) (input)
| J&J (join)
@ (x@y)P means “create x at the same location as y”
@ (x©x)P means “create x at whatever location”

@ x(u@u,v@v)> P means “receive u and v no matter what their
location is"

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006

10/22

Our solution: co-location constraints

P = processes

(x@y)P (new)

J join patterns

| x(u@v) (input)
| J&J (join)
@ (x@y)P means “create x at the same location as y”
@ (x©x)P means “create x at whatever location”

@ x(u@u,v@v)> P means “receive u and v no matter what their
location is"

@ x(u@u,vQu) > P means “receive u and v if they are co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 10 /22

Co-location relation:
(BASE)
(xey)(uov)Fu v

(LIFT)
XQykFu v

u,v#z
xey)(z@Z)Fu v

«O>» «F>r «=r «=>» = A

Co-location relation:
(BASE)
(xey)(uov)Fu v

(LIFT)
XQyhFu v uv#z
xey)(z@Z)Fu v
Reduction:
Z@ykFa~b

(z07)(Xlal | 71b] | x(u@u)&y(v@u)> P) > (F@F)P{2:5/,, ,}

«O>» «F>r «=r «=>» = A

Checking co-location

The process
w(x@x, yQy) > x(u@u) & y(vQu) > P

raises a runtime error if provided with a message
wlc, d]

where ¢ and d are not co-located
@ the message on w is lost forever

@ we want to check co-location statically through a type system

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 12 /22

(PAR)
(NIL) (ouTPUT)
A+ 0 A+ X[d]

(BANG)
AP AFQ AR P
AEPI@ AF1P
(orcH) (NEW)
A(u@u)(v@u) + P ANEx"y Ax@y)F P
AE x(u@u)&y(vOu)> P AE(x@y)P

«O>» «F>r «=r «=>» = A

(PAR)
(NIL) (ouTPUT)
A+ 0 A+ X[d]

(orCH)

(BANG)
ANEP AFQ AP

ANEP|Q
A(u@u)(v@u) + P

A+ 1P
(NEW)
AFx"y ANxey)+ P
AE x(u@u)&y(vOu)> P AE(x@y)P
«O>» «(Fr «Zr «E» E AR
 Laneve, Padovani (Bologna, Urbino) ~~ Smooth Orchestrators 20 march 2006 13/22

Distributable processes reduce to distributable processes
Theorem (subject reduction): If
e (x@Qy)F P, and
° (xey)P — (xey)@
then
° (x@y)F @
<Or B> < E=r «E» E WA
 Laneve, Padovani (Bologna, Urbino) ~~ Smooth Orchestrators 20 march 2006 14/22

Subject reduction

Distributable processes reduce to distributable processes
Theorem (subject reduction): If

e (x@y)F P, and
° (xey)P = (xey)@

then
° (x@y) @
Lemma (substitution): Substitution cannot be defined for single names
only
Consider
(a@a)(vou)(veu)Fu&vr>0 {2/}
leads to
(a@a)(v@u)fu&kar0
Subtitutions must preserve co-location |

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 14 /22

The smoothness restriction

We decouple the orchestrator from the continuation through the [-]

encoding

smooth orchestrator

[>Jie Pl = (&)(ZJDZ,[U,] BIE@RE)

icl iel i€l

continuation

The smooth orchestrator is now free to migrate

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 15 /22

The smoothness restriction

We decouple the orchestrator from the continuation through the [-]
encoding

smooth orchestrator

[>Jie Pl = (&)(ZJDZ,[U,] BIE@RE)

icl i€l i€l

continuation

The smooth orchestrator is now free to migrate

Proposition (encoding correctness): P is barbed congruent to [P]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006

15 /22

Implementation issues

Size of an orchestrator:
Xl(al @ Vl) & - &Xn(ﬁn @© Vn) D?[Ul cee U,,]

It may be encoded as

@ a vector with n+ 1 names x1, -+ , Xp, Z
@ a vector of ky + - -+ + kp values, where k;j = |u;l:

» the integer value j at position h indicates that the j-th and h-th bound
names must be co-located

» the constant c at position h indicates that the h-th bound name must
be co-located with ¢

Co-location check: it basically amounts to comparing IP addresses

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 16 /22

Compiling simple orchestrators

Turn an archestrator into a finite-state automaton (c.f. Le Fessant,
Maranget):

x(u)&y(v)>Z[uv]
is compiled into

Laneve, Padovani (Bologna, Urbino)

Smooth Orchestrators

29 march 2006 17 /22

Compiling orchestrators with co-location constraints |

x(u@u, vOu) & y(wOw) > Z[uvw|
is compiled into

@ +x = “there is a message
X[a, b] such that a and b are
co-located”

@ —x = “there is no message
X[a, b] such that a and b are
co-located”

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006

18 /22

Compiling orchestrators with co-location constraints |l

Consider
x(u@u) & y(vOu) > P

Reception of a message on y depends on the message received on x.

+x[u@u +y[v@v]

+y[v@u +x[u@v]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 /22

Compiling orchestrators with co-location constraints |l

Consider
x(u@u) & y(vOu) > P

Reception of a message on y depends on the message received on x.

@ What if the message on y arrives first?

+x[u@u +y[v@v]

+y[v@u +x[u@v]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 /22

Compiling orchestrators with co-location constraints |l

Consider
x(u@u) & y(vOu) > P

Reception of a message on y depends on the message received on x.

What if the message on y arrives first?
We rewrite the orchestrator thus:

+x[u@u +y[v@v]

+y[v@u +x[u@v]

y(v@v)&x(u@v)> P

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 19 /22

Compiling orchestrators with co-location constraints Il

Non-linearity increases significantly the complexity of matching
Consider
x(uQu, vQu, wOw) & x(a@a, b@b, c@b) > P

@ X|[z,z,z| can be interpreted as either

X[z, z, 2] or X[z,z,2Z]

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20/22

Compiling orchestrators with co-location constraints Il

Non-linearity increases significantly the complexity of matching
Consider

x(u@u, vOu, w@w) & x(a@a, b@b, c@b) > P
@ X|[z,z,z| can be interpreted as either
X[z, z, 2] or X[z,z,2Z]

e Upon arrival of X[z, z, z] whichever transition is chosen might be the
wrong one

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20/22

Compiling orchestrators with co-location constraints Il

Non-linearity increases significantly the complexity of matching
Consider
x(uQu, vQu, wOw) & x(a@a, b@b, c@b) > P

@ X|[z,z,z| can be interpreted as either
X[z, z, 2] or X[z,z,2Z]

e Upon arrival of X[z, z, z] whichever transition is chosen might be the
wrong one

@ Neither of the two patterns is “more specific’ than the other, they
cannot be sorted

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 20/22

@ The smooth orchestrator is usually small in size

@ The automaton is bigger, and it depends on the cardinality of name
occurrences which are not known until runtime

«Or «Fr o« » > DA

Compiling orchestrators: when and where?

@ The smooth orchestrator is usually small in size

@ The automaton is bigger, and it depends on the cardinality of name
occurrences which are not known until runtime

Two strategies:
@ eager compilation: bigger messages, needs patching

@ delayed compilation: smaller messages, burden on the receiver

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 21/22

Extensions and conclusion

Further investigations:
@ Stronger type system

» eliminate runtime co-location checks
» technically challenging (dangerous variables)

x(u@a) & y(v@a) > P

x and y cannot be treated polymorphically w.r.t. a because of their
dependency

@ Expressivity (workflow patterns)
PiDuce prototype available at
http://www.cs.unibo.it/PiDuce/

(C# implementation)

Laneve, Padovani (Bologna, Urbino) Smooth Orchestrators 29 march 2006 22/22

http://www.cs.unibo.it/PiDuce/

	Synchronization patterns
	Formal development

