
context-free session type inference
Luca Padovani
ESOP 2017



outline

1 Context-free session types

2 Resumable sessions

3 The model and its properties

4 OCaml implementation

5 Concluding remarks

2 / 30



one-slide introduction to session types

Definition (session type)
I type-level specification of a communication protocol
I how a session endpoint is meant to be used

T = ?int;?int;!bool;end

T = !int;!int;?bool;end

S = &[Eq : T ,Neg : ?int;!int;end]

Property (safety & fidelity)
Well-typed programs communicate safely and respect protocols

3 / 30



a non-uniform object with FuSe [Padovani ’17]

let stack c =
let rec none u = (* empty stack *)
match branch u with
| Push u → let x, u = receive u in

none (some x u)
| Stop u → u

A dead code

and some y u = (* stack with y on top *)
match branch u with
| Push u → let x, u = receive u in

some y (some x u)
| Pop u → send y u

A dead code

in none c

c : µX.&[Push : ?α;X]

4 / 30



a non-uniform object with FuSe [Padovani ’17]

let stack c =
let rec none u = (* empty stack *)
match branch u with
| Push u → let x, u = receive u in

none (some x u)
| Stop u → u A dead code

and some y u = (* stack with y on top *)
match branch u with
| Push u → let x, u = receive u in

some y (some x u)
| Pop u → send y u A dead code

in none c

c : µX.&[Push : ?α;X]

4 / 30



tv.pdf

5 / 30



from ordinary to context-free session types

Ordinary session types
I sequential composition limited to prefixes ?α;S
I language of (finite) traces is regular

Context-free session types [Thiemann & Vasconcelos ’16]
I general form of sequential composition T;S
I language of (finite) traces is context-free
I typability++, precision++

X = &[Push : ?α;Y;X, Stop : end]
Y = &[Push : ?α;Y;Y , Pop : !α]

6 / 30



a context-free session type system
Key ingredients [Thiemann & Vasconcelos ’16]
I monoidal laws for sequential composition

Γ ` e : T
Γ ` e : S

T ∼ S

I polymorphic recursion

Conclusion
I type checking is substantiallymore difficult (open problem)
I library implementation is challenging if at all possible

Compromise
I give up some flexibility (ask the programmer for help!)
I enable context-free session type inference

7 / 30



outline

1 Context-free session types

2 Resumable sessions

3 The model and its properties

4 OCaml implementation

5 Concluding remarks

8 / 30



resuming finished sub-protocols

1. Distinguish finished protocols
I end: finished protocol (no more actions afterwards)
I done: finished sub-protocol (must be resumed later)

2. Use sequential composition for
I ordering actions in types
I structuring code

f

@>

u

9 / 30



resuming finished sub-protocols

1. Distinguish finished protocols
I end: finished protocol (no more actions afterwards)
I done: finished sub-protocol (must be resumed later)

2. Use sequential composition for
I ordering actions in types
I structuring code

f

@>

u T;ST → done

9 / 30



resuming finished sub-protocols

1. Distinguish finished protocols
I end: finished protocol (no more actions afterwards)
I done: finished sub-protocol (must be resumed later)

2. Use sequential composition for
I ordering actions in types
I structuring code

f @> u T;ST → done

(T → done)→ T;S→ S
9 / 30



the idea is flawed

f : T → done

I f takes an endpoint u of type T
I f returns an endpoint v of type done
I v is not necessarily the same as u
I @> could be used for casting v to an arbitrary S

10 / 30



session types with endpoint identities

u : [T ]%

f : [T ]% → [done]%

send : t → [!t;T ]% → [T ]%

@> : ([T ]% → [done]%)→ [T;S]% → [S]%

create : unit→ ∃%.([T ]% × [T ]%)

11 / 30



session types with endpoint identities

u : [T ]%

f : [T ]% → [done]%

send : t → [!t;T ]% → [T ]%

@> : ([T ]% → [done]%)→ [T;S]% → [S]%

create : unit→ ∃%.([T ]% × [T ]%)

11 / 30



session types with endpoint identities

u : [T ]%

f : [T ]% → [done]%

send : t → [!t;T ]% → [T ]%

@> : ([T ]% → [done]%)→ [T;S]% → [S]%

create : unit→ ∃%.([T ]% × [T ]%)

11 / 30



session types with endpoint identities

u : [T ]%

f : [T ]% → [done]%

send : t → [!t;T ]% → [T ]%

@> : ([T ]% → [done]%)→ [T;S]% → [S]%

create : unit→ ∃%.([T ]% × [T ]%)

11 / 30



session types with endpoint identities

u : [T ]%

f : [T ]% → [done]%

send : t → [!t;T ]% → [T ]%

@> : ([T ]% → [done]%)→ [T;S]% → [S]%

create : unit→ ∃%.([T ]% × [T ]%)
11 / 30



outline

1 Context-free session types

2 Resumable sessions

3 The model and its properties

4 OCaml implementation

5 Concluding remarks

12 / 30



GV with resumable sessions
GV [Gay & Vasconcelos ’10]
I CBV λ-calculus
I threads
I session primitives create, send, receive, . . .

Existentials
I pack, unpack

A difficulty with subject reduction
I @> is operationally irrelevant
I @> affects the type of u for an unknown number of reductions

f @> u → ?

13 / 30



resumptions as a bracketing construct

{ f u }u

u : [T ]ι ` e :

[done]ι

u : [T;S]ι ` {e}u :

[S]ι

14 / 30



resumptions as a bracketing construct

{ f u }u

u : [T ]ι ` e :

[done]ι

u : [T;S]ι ` {e}u :

[S]ι

14 / 30



resumptions as a bracketing construct

{ f u }u

u : [T ]ι ` e :

[done]ι

u : [T;S]ι ` {e}u :

[S]ι

14 / 30



resumptions as a bracketing construct

{ f u }u

u : [T ]ι ` e : [done]ι
u : [T;S]ι ` {e}u :

[S]ι

14 / 30



resumptions as a bracketing construct

{ f u }u

u : [T ]ι ` e : [done]ι
u : [T;S]ι ` {e}u : [S]ι

14 / 30



subject reduction with resumptions

u : [T1;S]ι {e1}u
↓∗

u : [T2;S]ι {e2}u
↓∗

u : [T3;S]ι {e3}u
↓∗
...
↓∗

u : [done;S]ι {u}u
↓

u : [S]ι u

15 / 30



properties of the type system

Well-typed programs are well behaved
I communication safety
I protocol fidelity (@> guarantees sequentiality)

Identity uniqueness is key requirement

ouch (x, y) →∗ (x, y)
ouch : [done;T ]ι × [done;S]ι → [S]ι × [T ]ι

I if two endpoints have the same identity safety is compromised
I if two peers have the same identity fidelity is compromised

16 / 30



outline

1 Context-free session types

2 Resumable sessions

3 The model and its properties

4 OCaml implementation

5 Concluding remarks

17 / 30



endpoint type encoding

[T ]ι ; (t1, t2, ι, ι) t

Property (duality as equality)
I If [T ]ι ; (t, s, ι, ι) t then [T ]ι ; (s, t, ι, ι) t

18 / 30



session creation with first-class modules

val create : unit → ∃%.([T ]% × [T ]%)

val create : unit → (module Package)

module type Package = sig
type i and j (* abstract identities *)
val unpack : unit → (α,β,i,j) t × (β,α,j,i) t

end

let module S = (val create ()) in
let u, v = S.unpack () in (* only once! *)
fork server u; client v

19 / 30



endpoint resumption

val (@>) : ([α]% → [done]%)→ [α;β]% → [β]%

let (@>) = Obj.magic

20 / 30



the stack, resumed

let stack c =
let rec none u =
match branch u with
| Push u → let x, u = receive u in

none (some x u)
| Stop u → u

and some y u =
match branch u with
| Push u → let x, u = receive u in

some y (some x u)
| Pop u → send y u

in none c

21 / 30



the stack, resumed

let stack c =
let rec none u =
match branch u with
| Push u → let x, u = receive u in

none (some x @> u) (* resume *)
| Stop u → u

and some y u =
match branch u with
| Push u → let x, u = receive u in

some y (some x @> u) (* resume *)
| Pop u → send y u

in none c

22 / 30



the stack protocol inferred
val stack : ([< ’Stop of β | ’Push of (((γ msg, 0, δ, ε) t,
(((([< ’Pop of (((0, γ msg, δ, ε) t, (1, 1, δ, ε) t) seq,
((γ msg, 0, ε, δ) t, (1, 1, ε, δ) t) seq, δ, ε) t |
’Push of (((γ msg, 0, δ, ε) t, (((ϕ, 0, δ, ε) t, (ϕ, 0,
δ, ε) t) seq, ((0, ϕ, ε, δ) t, (0, ϕ, ε, δ) t) seq, δ,
ε) t) seq, ((0, γ msg, ε, δ) t, (((0, ϕ, ε, δ) t, (0,
ϕ, ε, δ) t) seq, ((ϕ, 0, δ, ε) t, (ϕ, 0, δ, ε) t) seq,
ε, δ) t) seq, δ, ε) t ] as ψ) tag as ϕ, 0, δ, ε) t, (α,
0, δ, ε) t) seq, ((0, ϕ, ε, δ) t, (0, α, ε, δ) t) seq,
δ, ε) t) seq, ((0, γ msg, ε, δ) t, (((0, ϕ, ε, δ) t,
(0, α, ε, δ) t) seq, ((ϕ, 0, δ, ε) t, (α, 0, δ, ε) t)
seq, ε, δ) t) seq, δ, ε) t ] tag as α, 0, δ, ε) t → β

stack : [X]% → [β]%
X = &[Push : ?γ;Y;X, Stop : β]
Y = &[Push : ?γ;Y;Y , Pop : !γ]

23 / 30



tree serialization [Thiemann & Vasconcelos ’16]

type α tree = Leaf | Node of α × α tree × α tree

let rec send_tree t u =
match t with
| Leaf → select ’Leaf u
| Node (x, l, r) → let u = select ’Node u in

let u = send x u in
let u = send_tree l u in
send_tree r u

send_tree : α tree→ [X]% → [X]%
X = ⊕[Leaf : X,Node : !α;X]

24 / 30



tree serialization with resumption

type α tree = Leaf | Node of α × α tree × α tree

let rec send_tree t u =
match t with
| Leaf → select ’Leaf u
| Node (x, l, r) → let u = select ’Node u in

let u = send x u in
let u = send_tree l @> u in
send_tree r u

send_tree : α tree→ [X]% → [done]%
X = ⊕[Leaf : done,Node : !α;X;X]

25 / 30



outline

1 Context-free session types

2 Resumable sessions

3 The model and its properties

4 OCaml implementation

5 Concluding remarks

26 / 30



assessment

/ explicit resumptions in code

, resumptions are sparse and their locations easy to spot
I recursive calls not in tail position

, off-the-shelf type checking and inference

27 / 30



on portability

Required ingredients
I parametric polymorphism
I inference engine

Safety of resumptions
I statically guaranteed⇒ existential types
I dynamically guaranteed⇒ lightweight runtime check

let (@>) f u =
let v = Obj.magic f u in
if same_endpoint u v then v else raise Error

28 / 30



related work on type-level identities

I Launchbury & Peyton Jones, State in Haskell, 1995

I Walker & Watkins, On regions and linear types, 2001

I Ahmed, Fluet, Morrisett, L3: A linear language with
locations, 2007

I Charguéraud & Pottier, Functional translation of a
calculus of capabilities, 2008

I Tov & Pucella, Practical affine types, 2011

29 / 30



happy hacking with FuSe

http://di.unito.it/luca

30 / 30

http://di.unito.it/luca

	Context-free session types
	Resumable sessions
	The model and its properties
	OCaml implementation
	Concluding remarks

