
fair termination of asynchronous binary sessions
Luca Padovani Gianluigi Zavattaro

Department of Computer Science and Engineering – University of Bologna



duality, asynchrony and subtyping

Mostrous et al. [2009], Chen et al. [2017], Ghilezan et al. [2023]
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output anticipation and causal dependencies
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• c can be sent early (doesn’t depend on the previous input)

• d cannot be sent early (depends on the previous input)
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unbounded output anticipation
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• aforementioned approaches allow bounded output anticipation
• here we consider unbounded output anticipation as well

• without a fairness assumption we can have orphan messages
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towards asynchronous subtyping

Our approach
• capture asynchrony in the transition relation of session types
• transitions say what a process can do, not what it does

k ∈ I

⊕{ai : Si}i∈I
!ak−→ Sk

∀i ∈ I : Si
!c−→ Ti

&{ai : Si}i∈I
!c−→ &{ai : Ti}i∈I

Example: deriving an early output

!c.S1
!c−→ S1 !c.S2 ⊕ !d.T !c−→ S2

?a.!c.S1 & ?b.(!c.S2 ⊕ !d.T) !c−→ ?a.S1 & ?b.S2
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a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T

!c.U !c−→ U

S
!c−→ T

!c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]
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fair asynchronous subtyping

Definition (simplified, first order)
Fair asynchronous subtyping is the largest ⩽ s.t. S ⩽ T implies

1 S
!a−→ S′ implies T

!a−→ T ′ and S′ ⩽ T ′

2 T
?a−→ T ′ implies S

?a−→ S′ and S′ ⩽ T ′

Properties
• “same” as synchronous subtyping (input/output variance)

• S ⩽ T implies T⊥ ⩽ S⊥ (closure under duality)
• undecidable
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some corner cases

?a?a

?b

!c

̸⩽

• holds for synchronous subtyping [Gay and Hole, 2005]

• no big deal, ?a is not inhabited in our type system
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ensuring weak program termination

Starting point: type system based on linear logic
• (in)finitary logic with fixed points e.g. [Doumane, 2017]

• infinitary logic with measures [Dagnino and Padovani, 2024]
heavier on annotations but simpler proofs

(weak) cut elimination ⇒ (weak) program termination

. . . but what about asynchrony?
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asynchrony in a logical setting

Queueless asynchronous semantics: add “deep” cut reductions

(x)(x ◁ c.P |

Bx[

x ▷ c.Q

]

) → (x)(P |

Bx[

Q

]

)

Asynchronous subtyping: use explicit coercions

classical linear logic

S⊥ = T

x ↔ y ⊢ x : S, y : T

our type system

S⊥ ⩽ T

x ↔ y ⊢ x : S, y : T

(closure under duality)
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properties of well-typed processes

The usual stuff
• subject reduction
• deadlock freedom
• weak termination

In addition
• if P ⊢ ∅, then P is orphan message free

Proof
• Suppose P →∗ Q where Q contains some floating message c
• Q ⊢ ∅ (subject reduction)
• Q →∗ done (no deadlocks & weak termination)
• c must have been consumed (messages don’t vanish)
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concluding remarks

Fair asynchronous subtyping
• coinductive LTS
• simple characterization à la Gay and Hole [2005]
• nice properties (variance, closure, unbounded anticipation)

Type system
• based on “asynchronous” linear logic
• ensures weak termination hence absence of orphan messages

Conjecture
• easy extension to multiparty sessions

thank you
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