
fair termination of asynchronous binary sessions
Luca Padovani Gianluigi Zavattaro

Department of Computer Science and Engineering – University of Bologna

duality, asynchrony and subtyping

Mostrous et al. [2009], Chen et al. [2017], Ghilezan et al. [2023]

?a

!c

!a

?c

dual of

• communication safety ⌣

• progress ⌣

• half-duplex communication ⌢

2 / 13

duality, asynchrony and subtyping
Mostrous et al. [2009], Chen et al. [2017], Ghilezan et al. [2023]

?a

!c

!c

?a

!a

?c

dual ofsubtype of

early output

• communication safety ⌣

• progress ⌣

• full-duplex communication ⌣

2 / 13

output anticipation and causal dependencies

?a ?b

!c
!c !d

!c

?a ?b

⩽

• c can be sent early (doesn’t depend on the previous input)

• d cannot be sent early (depends on the previous input)

3 / 13

output anticipation and causal dependencies

?a ?b

!c
!c !d

!d

?a ?b

̸⩽

• c can be sent early (doesn’t depend on the previous input)
• d cannot be sent early (depends on the previous input)

3 / 13

unbounded output anticipation

?a

?b

!c

⩽

!c

?a

?b

• aforementioned approaches allow bounded output anticipation
• here we consider unbounded output anticipation as well

• without a fairness assumption we can have orphan messages

4 / 13

unbounded output anticipation

?a

?b

!c

⩽

!c

?a

?b

!a

!b

?c

dual of

• aforementioned approaches allow bounded output anticipation
• here we consider unbounded output anticipation as well
• without a fairness assumption we can have orphan messages

4 / 13

contribution

+

⇓

fair
asynchronous

subtyping

type system
ensuring weak

process termination

unbounded output anticipation
no orphan messages

5 / 13

towards asynchronous subtyping

Our approach
• capture asynchrony in the transition relation of session types
• transitions say what a process can do, not what it does

k ∈ I

⊕{ai : Si}i∈I
!ak−→ Sk

∀i ∈ I : Si
!c−→ Ti

&{ai : Si}i∈I
!c−→ &{ai : Ti}i∈I

Example: deriving an early output

!c.S1
!c−→ S1 !c.S2 ⊕ !d.T !c−→ S2

?a.!c.S1 & ?b.(!c.S2 ⊕ !d.T) !c−→ ?a.S1 & ?b.S2

6 / 13

a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T

!c.U !c−→ U

S
!c−→ T

!c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]

7 / 13

a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T

!c.U !c−→ U

S
!c−→ T !c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]

7 / 13

a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T

!c.U !c−→ U

S
!c−→ T !c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]

7 / 13

a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T !c.U !c−→ U

S
!c−→ T !c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]

7 / 13

a problem with recursive session types

S = ?a.S & ?b.!c.U T = ?a.T & ?b.U

...

S
!c−→ T !c.U !c−→ U

S
!c−→ T !c.U !c−→ U

S
!c−→ T

we turn the problem into the solution
• define the LTS coinductively �

• there’s a catch: make sure no phony transitions are derivable
• use a generalized inference system [Ancona et al., 2017]

7 / 13

fair asynchronous subtyping

Definition (simplified, first order)
Fair asynchronous subtyping is the largest ⩽ s.t. S ⩽ T implies

1 S
!a−→ S′ implies T

!a−→ T ′ and S′ ⩽ T ′

2 T
?a−→ T ′ implies S

?a−→ S′ and S′ ⩽ T ′

Properties
• “same” as synchronous subtyping (input/output variance)

• S ⩽ T implies T⊥ ⩽ S⊥ (closure under duality)
• undecidable

8 / 13

fair asynchronous subtyping

Definition (simplified, first order)
Fair asynchronous subtyping is the largest ⩽ s.t. S ⩽ T implies

1 S
!a−→ S′ implies T

!a−→ T ′ and S′ ⩽ T ′

2 T
?a−→ T ′ implies S

?a−→ S′ and S′ ⩽ T ′

Properties
• “same” as synchronous subtyping (input/output variance)
• S ⩽ T implies T⊥ ⩽ S⊥ (closure under duality)

• undecidable

8 / 13

fair asynchronous subtyping

Definition (simplified, first order)
Fair asynchronous subtyping is the largest ⩽ s.t. S ⩽ T implies

1 S
!a−→ S′ implies T

!a−→ T ′ and S′ ⩽ T ′

2 T
?a−→ T ′ implies S

?a−→ S′ and S′ ⩽ T ′

Properties
• “same” as synchronous subtyping (input/output variance)
• S ⩽ T implies T⊥ ⩽ S⊥ (closure under duality)
• undecidable

8 / 13

some corner cases

?a?a

?b

!c

̸⩽

• holds for synchronous subtyping [Gay and Hole, 2005]

• no big deal, ?a is not inhabited in our type system

9 / 13

some corner cases

?a?a

?b

!c

!c

?a

?b

̸⩽⩽

• holds for synchronous subtyping [Gay and Hole, 2005]

• no big deal, ?a is not inhabited in our type system

9 / 13

some corner cases

?a?a

?b

!c

!c

?a

?b

̸⩽⩽

• holds for synchronous subtyping [Gay and Hole, 2005]
• no big deal, ?a is not inhabited in our type system

9 / 13

ensuring weak program termination

Starting point: type system based on linear logic
• (in)finitary logic with fixed points e.g. [Doumane, 2017]

• infinitary logic with measures [Dagnino and Padovani, 2024]
heavier on annotations but simpler proofs

(weak) cut elimination ⇒ (weak) program termination

. . . but what about asynchrony?

10 / 13

asynchrony in a logical setting

Queueless asynchronous semantics: add “deep” cut reductions

(x)(x ◁ c.P |

Bx[

x ▷ c.Q

]

) → (x)(P |

Bx[

Q

]

)

Asynchronous subtyping: use explicit coercions

classical linear logic

S⊥ = T

x ↔ y ⊢ x : S, y : T

our type system

S⊥ ⩽ T

x ↔ y ⊢ x : S, y : T

(closure under duality)

11 / 13

asynchrony in a logical setting

Queueless asynchronous semantics: add “deep” cut reductions

(x)(x ◁ c.P | Bx[x ▷ c.Q]) → (x)(P | Bx[Q])

sequence of output prefixes on x

Asynchronous subtyping: use explicit coercions

classical linear logic

S⊥ = T

x ↔ y ⊢ x : S, y : T

our type system

S⊥ ⩽ T

x ↔ y ⊢ x : S, y : T

(closure under duality)

11 / 13

asynchrony in a logical setting

Queueless asynchronous semantics: add “deep” cut reductions

(x)(x ◁ c.P | Bx[x ▷ c.Q]) → (x)(P | Bx[Q])

sequence of output prefixes on x

Asynchronous subtyping: use explicit coercions

classical linear logic

S⊥ = T

x ↔ y ⊢ x : S, y : T

our type system

S⊥ ⩽ T

x ↔ y ⊢ x : S, y : T

(closure under duality)

11 / 13

properties of well-typed processes

The usual stuff
• subject reduction
• deadlock freedom
• weak termination

In addition
• if P ⊢ ∅, then P is orphan message free

Proof
• Suppose P →∗ Q where Q contains some floating message c
• Q ⊢ ∅ (subject reduction)
• Q →∗ done (no deadlocks & weak termination)
• c must have been consumed (messages don’t vanish)

12 / 13

concluding remarks

Fair asynchronous subtyping
• coinductive LTS
• simple characterization à la Gay and Hole [2005]
• nice properties (variance, closure, unbounded anticipation)

Type system
• based on “asynchronous” linear logic
• ensures weak termination hence absence of orphan messages

Conjecture
• easy extension to multiparty sessions

thank you

13 / 13

concluding remarks

Fair asynchronous subtyping
• coinductive LTS
• simple characterization à la Gay and Hole [2005]
• nice properties (variance, closure, unbounded anticipation)

Type system
• based on “asynchronous” linear logic
• ensures weak termination hence absence of orphan messages

Conjecture
• easy extension to multiparty sessions

thank you

13 / 13

concluding remarks

Fair asynchronous subtyping
• coinductive LTS
• simple characterization à la Gay and Hole [2005]
• nice properties (variance, closure, unbounded anticipation)

Type system
• based on “asynchronous” linear logic
• ensures weak termination hence absence of orphan messages

Conjecture
• easy extension to multiparty sessions

thank you
13 / 13

references

Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing
inference systems by coaxioms. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of
Lecture Notes in Computer Science, pages 29–55. Springer, 2017. P

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and
Nobuko Yoshida. On the preciseness of subtyping in session types.
Log. Methods Comput. Sci., 13(2), 2017. P

http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.23638/LMCS-13(2:12)2017

references (cont.)

Francesco Dagnino and Luca Padovani. small caps: An infinitary linear
logic for a calculus of pure sessions. In Alessandro Bruni, Alberto
Momigliano, Matteo Pradella, Matteo Rossi, and James Cheney,
editors, Proceedings of the 26th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2024,
Milano, Italy, September 9-11, 2024, pages 4:1–4:13. ACM, 2024. P

Amina Doumane. On the infinitary proof theory of logics with fixed
points. (Théorie de la démonstration infinitaire pour les logiques à
points fixes). PhD thesis, Paris Diderot University, France, 2017. URL
https://tel.archives-ouvertes.fr/tel-01676953.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2-3):191–225, 2005. P

Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and
Nobuko Yoshida. Precise subtyping for asynchronous multiparty
sessions. ACM Trans. Comput. Log., 24(2):14:1–14:73, 2023. P

http://dx.doi.org/10.1145/3678232.3678234
https://tel.archives-ouvertes.fr/tel-01676953
http://dx.doi.org/10.1007/S00236-005-0177-Z
http://dx.doi.org/10.1145/3568422

references (cont.)

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal
typing in partially commutative asynchronous sessions. In Giuseppe
Castagna, editor, Programming Languages and Systems, 18th
European Symposium on Programming, ESOP 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502
of Lecture Notes in Computer Science, pages 316–332. Springer,
2009. P

http://dx.doi.org/10.1007/978-3-642-00590-9_23

	Introduction
	Fair Asynchronous Subtyping
	Fair Process Termination
	Concluding Remarks
	Appendix
	References

