
typestate for concurrent objects
Silvia Crafa & Luca Padovani



typestate-oriented programming
(Aldrich et al., OOPSLA 2009)

Aims
I static enforcement of object protocols

Mechanisms
I state annotations in object types Empty, Full
I flow-sensitive type system [Empty » Full]
I aliasing control

What about concurrent objects?
I concurrent objects are aliased by definition
I state transitions aren’t always statically trackable



concurrent linear buffer
a simple example of stateful concurrent object

producer buffer consumerPut Get

Reply

I producer knows that buffer is initially empty
I consumer does not (and cannot) know when buffer is full



our proposal for concurrent TSOP
(Crafa & Padovani, OOPSLA 2015)

Hybrid approach
I strict protocol if possible/desirable
I lax protocol + runtime support otherwise

Objective Join Calculus (Fournet et al. 2003)
I concurrent objects
I synchronization patterns
I state and operations unified into messages



EXAMPLE



types for concurrent objects
commutative Kleene algebra (Conway 1971)

type usage

0 stay away

1 discard
m( t ) send m
t + s either t or s

t · s both t and s concurrently
∗t t ad libitum concurrently

EMPTY · Put · Get + FULL · Get + 1



types for concurrent objects
commutative Kleene algebra (Conway 1971)

type usage

0 stay away

1 discard
m( t ) send m
t + s either t or s
t · s both t and s concurrently
∗t t ad libitum concurrently

EMPTY · Put · Get + FULL · Get + 1



types for concurrent objects
commutative Kleene algebra (Conway 1971)

type usage
0 stay away
1 discard

m( t ) send m
t + s either t or s
t · s both t and s concurrently
∗t t ad libitum concurrently

EMPTY · Put · Get + FULL · Get + 1



types for concurrent objects
commutative Kleene algebra (Conway 1971)

type usage
0 stay away
1 discard

m( t ) send m
t + s either t or s
t · s both t and s concurrently
∗t t ad libitum concurrently

EMPTY · Put · Get + FULL · Get + 1



TYPED EXAMPLES



wrap-up
what types tell us about concurrent objects

Properties
I communication safety
I protocol fidelity
I boundedness ∗-free type⇒ bounded message queue

More information
I check for orphan messages
I check for impossible reactions
I type-driven safe object deallocation



more interesting examples to play with
available in the source distribution (online) or on my laptop

I read/write locks
I Michael & Scott concurrent queues
I future variables with cancellation and timeouts
I approximation of π from Akka tutorial
I master with unbounded workers
I sessions
I sequential non-uniform objects (files, stacks, iterators, . . . )
I got one not listed here? let’s code it together!

http://www.di.unito.it/~padovani/Software/CobaltBlue

http://www.di.unito.it/~padovani/Software/CobaltBlue

