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background: linear logic and session types
Luís Caires and Frank Pfenning, Session types as intu-
itionistic linear propositions, CONCUR 2010
. . . ,Wadler [2014], Lindley and Morris [2016], . . .

Linear Logic Sessions
1 ⊥ send/receive unit and terminate

A⊗ B A O B send/receive payload A and continue as B
A⊕ B A N B send/receive choice and continue as A or B

cut reduction communication
cut elimination deadlock freedom, termination

Great Ë
• interactions terminate in a bounded number of steps

Not so great é
• interactions terminate in a bounded number of steps
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motivation

Buyer Seller
   . . .  Ç

Buyer adds n (fixed) items into shopping cart and pays
• all interactions are finite
• well typed Ë

Buyer adds arbitrarily many items into shopping cart and pays
• there is an infinite interaction in which buyer keeps adding

items into the shopping cart and never pays
• cannot be modeled or is ill typed é

Observation
• the infinite interaction is “unreasonable” or “unfair”
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contribution

• “session” type system rooted in linear logic
• well-typed processes fairly terminate

deadlock freedom

fair termination

termination
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core elements

Processes = linear π-calculus [Kobayashi et al., 1999]
• sessions are encodable [Kobayashi, 2002, Dardha et al., 2017]

Types = MALL with least and greatest fixed points

A,B ::= ⊥ | ⊤ | 1 | 0 | A⊕ B | A N B | A⊗ B | A O B | µX.A | νX.A

• A⊗ B and A O B describe output/input of pairs instead of
sequentiality

Proof system = µMALL∞ [Baelde et al., 2016, Doumane, 2017]
• infinitary proof system for MALL with fixed points
• standard rule for non-deterministic choices
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buyer-seller in the (sugared) linear π-calculus

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩)

Notes
• we use add and pay as labels for “left” and “right” choices
• we keep using the same name x instead of creating new

continuations (just syntactic sugar, channels are linear)
• processes are infinite (just like proof derivations in µMALL∞)
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notions of termination

Definition (run)
A run of P is a maximal reduction sequence P → P1 → P2 → · · ·

• P is terminating if all of its runs are finite
• P is weakly terminating if it has a finite run
• P is fairly terminating if all of its fair runs are finite

Definition (fair run)
A run is fair iff contains finitely many weakly terminating processes

• any finite run is fair
• any unfair run is infinite
• any unfair run goes through weakly terminating processes
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about this fairness assumption

Properties
• particular instance of fair reachability of predicates by

Queille and Sifakis [1983]
• induces the largest family of fairly terminating processes

Theorem (proof method for fair termination)
P fairly terminating ⇐⇒ ∀P ⇒ Q implies Q weakly terminating

Corollary
If a type system ensures weak termination, then it also ensures
fair termination (under this fairness assumption)
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example: shopping

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩)

• there is one infinite run in which Buyer keeps adding items
into the shopping cart

• this run is unfair, because Buyer may always pay and finish
• we want this system to be well typed
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example: compulsive shopping

CompulsiveBuyer(x) = rec x.add x.CompulsiveBuyer⟨x⟩
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(CompulsiveBuyer⟨x⟩ ∥ Seller⟨x, y⟩)

• there is (only) one infinite run in which CompulsiveBuyer
keeps adding items into the shopping cart

• this run is fair, because CompulsiveBuyer will never pay
• we want this system to be ill typed
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typing rules = µMALL∞ + [choice]

Judgments
P ⊢ Γ

1-1 correspondence with µMALL∞ proof rules

P ⊢ Γ , y : A Q ⊢ ∆, z : B

x(y, z)(P ∥ Q) ⊢ Γ ,∆, x : A⊗ B
[⊗]

P ⊢ Γ , y : A{νX.A/X}
corec x(y).P ⊢ Γ , x : νX.A

[ν]

Non-deterministic choice

P ⊢ Γ Q ⊢ Γ

P ⊕ Q ⊢ Γ
[choice]
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example: typing of buyer

Buyer

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())

Buyer protocol

B def
= µX.X ⊕ 1

...

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B
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example: typing of seller

Seller

Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

Seller protocol

S def
= νX.X N ⊥

...

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

• y is used after an arbitrarily long interaction
• y is used only if the interaction eventually terminates
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some typing derivations are invalid

...

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Caution
• there is a typing derivation for CompulsiveBuyer
• combining CompulsiveBuyer with Seller results in a
non-terminating interaction

• a known issue of infinitary proof systems like µMALL∞ is that
some (infinite) typing derivations compromise cut elimination
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the validity condition in µMALL∞ [Baelde et al., 2016]

Definition (valid branch)
An infinite branch in a typing derivation is valid if there is a
greatest fixed point that is unfolded infinitely many times

• the precise definition of valid branch is quite technical, see
Baelde et al. [2016], Doumane [2017] and the paper

Definition (valid derivation)
A typing derivation is valid if so is every infinite branch in it

Intuition
• every greatest fixed point is matched by a least fixed point
• in a valid derivation there is (at least) one least fixed point

that is unfolded finitely many times
• this finite unfolding dominates the duration of the interaction
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which shopping is allowed?

Seller is valid Ë

.

.

.

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

CompulsiveBuyer is invalid Ë

.

.

.

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B ⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Buyer is invalid é
.
.
.

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B ⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B ⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B ⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B
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towards a more permissive validity condition

Let’s look again at the typing derivation for Buyer
...

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B

• the infinite branch goes through infinitely many choices
• the infinite branch corresponds to an unfair run
• it should not be considered as far as validity is concerned
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avoiding unfair branches

Definition (process rank)
The rank of a process is the least number of non-deterministic
choices it can possibly make before it terminates

• rank ≈ how far away the process is from termination
• definition is conservative, some processes have rank ∞

Definition (fair branch)
A branch in a typing derivation is fair if it traverses finitely many,
finitely-ranked choices

Definition (valid derivation, revisited)
A typing derivation is valid if so is every infinite fair branch in it
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which shopping is allowed, now?

Seller is valid Ë
infinite branch fair & valid

.

.

.

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

CompulsiveBuyer is invalid Ë
infinite branch fair & invalid

.

.

.

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B ⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Buyer is valid Ë
rank 1 – the infinite branch is unfair

.

.

.

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B ⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B ⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B ⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B
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properties of well-typed processes

Theorem (subject reduction)
If P ⊩ Γ and P → Q then Q ⊩ Γ

Theorem (weak termination)
If P ⊩ x : 1 then P ⇒ x()

Proof.
From cut elimination of µMALL∞

Theorem (fair termination )
If P ⊩ x : 1 then P is fairly terminating

Proof.
From weak termination and proof principle of fair termination

20 / 21



concluding remarks

Summary
• minimal and conservative extension of µMALL∞

• well-typed processes fairly terminate
• fair termination entails deadlock/lock/junk freedom

In the (extended version of the) paper (online)
• omitted details and proofs
• more examples (fork/join parallelism, context-free protocols)
• decidability algorithm for proof validity with fair branches
• alternative calculus with finite representation of processes
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