
an infinitary proof theory of linear logic
ensuring fair termination in the linear π-calculus

Luca Ciccone, University of Torino
Luca Padovani, University of Camerino

33rd International Conference on Concurrency Theory – CONCUR 2022 – Warsaw

background: linear logic and session types
Luís Caires and Frank Pfenning, Session types as intu-
itionistic linear propositions, CONCUR 2010
. . . ,Wadler [2014], Lindley and Morris [2016], . . .

Linear Logic Sessions
1 ⊥ send/receive unit and terminate

A⊗ B A O B send/receive payload A and continue as B
A⊕ B A N B send/receive choice and continue as A or B

cut reduction communication
cut elimination deadlock freedom, termination

Great Ë
• interactions terminate in a bounded number of steps

Not so great é
• interactions terminate in a bounded number of steps

2 / 21

background: linear logic and session types
Luís Caires and Frank Pfenning, Session types as intu-
itionistic linear propositions, CONCUR 2010
. . . ,Wadler [2014], Lindley and Morris [2016], . . .

Linear Logic Sessions
1 ⊥ send/receive unit and terminate

A⊗ B A O B send/receive payload A and continue as B
A⊕ B A N B send/receive choice and continue as A or B

cut reduction communication
cut elimination deadlock freedom, termination

Great Ë
• interactions terminate in a bounded number of steps

Not so great é
• interactions terminate in a bounded number of steps

2 / 21

motivation

Buyer Seller
 . . . Ç

Buyer adds n (fixed) items into shopping cart and pays
• all interactions are finite
• well typed Ë

Buyer adds arbitrarily many items into shopping cart and pays
• there is an infinite interaction in which buyer keeps adding

items into the shopping cart and never pays
• cannot be modeled or is ill typed é

Observation
• the infinite interaction is “unreasonable” or “unfair”

3 / 21

contribution

• “session” type system rooted in linear logic
• well-typed processes fairly terminate

deadlock freedom

fair termination

termination

4 / 21

core elements

Processes = linear π-calculus [Kobayashi et al., 1999]
• sessions are encodable [Kobayashi, 2002, Dardha et al., 2017]

Types = MALL with least and greatest fixed points

A,B ::= ⊥ | ⊤ | 1 | 0 | A⊕ B | A N B | A⊗ B | A O B | µX.A | νX.A

• A⊗ B and A O B describe output/input of pairs instead of
sequentiality

Proof system = µMALL∞ [Baelde et al., 2016, Doumane, 2017]
• infinitary proof system for MALL with fixed points
• standard rule for non-deterministic choices

5 / 21

buyer-seller in the (sugared) linear π-calculus

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩)

Notes
• we use add and pay as labels for “left” and “right” choices
• we keep using the same name x instead of creating new

continuations (just syntactic sugar, channels are linear)
• processes are infinite (just like proof derivations in µMALL∞)

6 / 21

notions of termination

Definition (run)
A run of P is a maximal reduction sequence P → P1 → P2 → · · ·

• P is terminating if all of its runs are finite
• P is weakly terminating if it has a finite run
• P is fairly terminating if all of its fair runs are finite

Definition (fair run)
A run is fair iff contains finitely many weakly terminating processes

• any finite run is fair
• any unfair run is infinite
• any unfair run goes through weakly terminating processes

7 / 21

notions of termination

Definition (run)
A run of P is a maximal reduction sequence P → P1 → P2 → · · ·

• P is terminating if all of its runs are finite
• P is weakly terminating if it has a finite run
• P is fairly terminating if all of its fair runs are finite

Definition (fair run)
A run is fair iff contains finitely many weakly terminating processes

• any finite run is fair
• any unfair run is infinite
• any unfair run goes through weakly terminating processes

7 / 21

about this fairness assumption

Properties
• particular instance of fair reachability of predicates by

Queille and Sifakis [1983]
• induces the largest family of fairly terminating processes

Theorem (proof method for fair termination)
P fairly terminating ⇐⇒ ∀P ⇒ Q implies Q weakly terminating

Corollary
If a type system ensures weak termination, then it also ensures
fair termination (under this fairness assumption)

8 / 21

about this fairness assumption

Properties
• particular instance of fair reachability of predicates by

Queille and Sifakis [1983]
• induces the largest family of fairly terminating processes

Theorem (proof method for fair termination)
P fairly terminating ⇐⇒ ∀P ⇒ Q implies Q weakly terminating

Corollary
If a type system ensures weak termination, then it also ensures
fair termination (under this fairness assumption)

8 / 21

example: shopping

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(Buyer⟨x⟩ ∥ Seller⟨x, y⟩)

• there is one infinite run in which Buyer keeps adding items
into the shopping cart

• this run is unfair, because Buyer may always pay and finish
• we want this system to be well typed

9 / 21

example: compulsive shopping

CompulsiveBuyer(x) = rec x.add x.CompulsiveBuyer⟨x⟩
Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

(x)(CompulsiveBuyer⟨x⟩ ∥ Seller⟨x, y⟩)

• there is (only) one infinite run in which CompulsiveBuyer
keeps adding items into the shopping cart

• this run is fair, because CompulsiveBuyer will never pay
• we want this system to be ill typed

10 / 21

typing rules = µMALL∞ + [choice]

Judgments
P ⊢ Γ

1-1 correspondence with µMALL∞ proof rules

P ⊢ Γ , y : A Q ⊢ ∆, z : B

x(y, z)(P ∥ Q) ⊢ Γ ,∆, x : A⊗ B
[⊗]

P ⊢ Γ , y : A{νX.A/X}
corec x(y).P ⊢ Γ , x : νX.A

[ν]

Non-deterministic choice

P ⊢ Γ Q ⊢ Γ

P ⊕ Q ⊢ Γ
[choice]

11 / 21

example: typing of buyer

Buyer

Buyer(x) = rec x.(add x.Buyer⟨x⟩ ⊕ pay x.x())

Buyer protocol

B def
= µX.X ⊕ 1

...

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B

12 / 21

example: typing of seller

Seller

Seller(x, y) = corec x.case x{Seller⟨x, y⟩, x().y()}

Seller protocol

S def
= νX.X N ⊥

...

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

• y is used after an arbitrarily long interaction
• y is used only if the interaction eventually terminates

13 / 21

some typing derivations are invalid

...

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Caution
• there is a typing derivation for CompulsiveBuyer
• combining CompulsiveBuyer with Seller results in a
non-terminating interaction

• a known issue of infinitary proof systems like µMALL∞ is that
some (infinite) typing derivations compromise cut elimination

14 / 21

the validity condition in µMALL∞ [Baelde et al., 2016]

Definition (valid branch)
An infinite branch in a typing derivation is valid if there is a
greatest fixed point that is unfolded infinitely many times

• the precise definition of valid branch is quite technical, see
Baelde et al. [2016], Doumane [2017] and the paper

Definition (valid derivation)
A typing derivation is valid if so is every infinite branch in it

Intuition
• every greatest fixed point is matched by a least fixed point
• in a valid derivation there is (at least) one least fixed point

that is unfolded finitely many times
• this finite unfolding dominates the duration of the interaction

15 / 21

which shopping is allowed?

Seller is valid Ë

.

.

.

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

CompulsiveBuyer is invalid Ë

.

.

.

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B ⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Buyer is invalid é
.
.
.

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B ⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B ⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B ⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B

16 / 21

towards a more permissive validity condition

Let’s look again at the typing derivation for Buyer
...

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B

• the infinite branch goes through infinitely many choices
• the infinite branch corresponds to an unfair run
• it should not be considered as far as validity is concerned

17 / 21

avoiding unfair branches

Definition (process rank)
The rank of a process is the least number of non-deterministic
choices it can possibly make before it terminates

• rank ≈ how far away the process is from termination
• definition is conservative, some processes have rank ∞

Definition (fair branch)
A branch in a typing derivation is fair if it traverses finitely many,
finitely-ranked choices

Definition (valid derivation, revisited)
A typing derivation is valid if so is every infinite fair branch in it

18 / 21

avoiding unfair branches

Definition (process rank)
The rank of a process is the least number of non-deterministic
choices it can possibly make before it terminates

• rank ≈ how far away the process is from termination
• definition is conservative, some processes have rank ∞

Definition (fair branch)
A branch in a typing derivation is fair if it traverses finitely many,
finitely-ranked choices

Definition (valid derivation, revisited)
A typing derivation is valid if so is every infinite fair branch in it

18 / 21

which shopping is allowed, now?

Seller is valid Ë
infinite branch fair & valid

.

.

.

Seller⟨x, y⟩ ⊢ x : S, y : 1

[1]
y() ⊢ y : 1

[⊥]
x().y() ⊢ x : ⊥, y : 1

[N]
case x{Seller⟨x, y⟩, x().y()} ⊢ x : S N ⊥, y : 1

[ν]
Seller⟨x, y⟩ ⊢ x : S, y : 1

CompulsiveBuyer is invalid Ë
infinite branch fair & invalid

.

.

.

CompulsiveBuyer⟨x⟩ ⊢ x : B
[⊕]

add x.CompulsiveBuyer⟨x⟩ ⊢ x : B ⊕ 1
[µ]

CompulsiveBuyer⟨x⟩ ⊢ x : B

Buyer is valid Ë
rank 1 – the infinite branch is unfair

.

.

.

Buyer⟨x⟩ ⊢ x : B
[⊕]

add x.Buyer⟨x⟩ ⊢ x : B ⊕ 1

[1]
x() ⊢ x : 1

[⊕]
pay x.x() ⊢ x : B ⊕ 1

[choice]
add x.Buyer⟨x⟩ ⊕ pay x.x() ⊢ x : B ⊕ 1

[µ]
Buyer⟨x⟩ ⊢ x : B

19 / 21

properties of well-typed processes

Theorem (subject reduction)
If P ⊩ Γ and P → Q then Q ⊩ Γ

Theorem (weak termination)
If P ⊩ x : 1 then P ⇒ x()

Proof.
From cut elimination of µMALL∞

Theorem (fair termination)
If P ⊩ x : 1 then P is fairly terminating

Proof.
From weak termination and proof principle of fair termination

20 / 21

concluding remarks

Summary
• minimal and conservative extension of µMALL∞

• well-typed processes fairly terminate
• fair termination entails deadlock/lock/junk freedom

In the (extended version of the) paper (online)
• omitted details and proofs
• more examples (fork/join parallelism, context-free protocols)
• decidability algorithm for proof validity with fair branches
• alternative calculus with finite representation of processes

21 / 21

references

David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof
theory: the multiplicative additive case. In Jean-Marc Talbot and
Laurent Regnier, editors, 25th EACSL Annual Conference on
Computer Science Logic, CSL 2016, August 29 - September 1, 2016,
Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic
propositions as session types. Math. Struct. Comput. Sci., 26(3):
367–423, 2016.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types
revisited. Inf. Comput., 256:253–286, 2017.

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.1017/S0960129514000218
http://dx.doi.org/10.1016/j.ic.2017.06.002

references (cont.)

Amina Doumane. On the infinitary proof theory of logics with fixed
points. (Théorie de la démonstration infinitaire pour les logiques à
points fixes). PhD thesis, Paris Diderot University, France, 2017. URL
https://tel.archives-ouvertes.fr/tel-01676953.

Naoki Kobayashi. Type systems for concurrent programs. In 10th
Anniversary Colloquium of UNU/IIST, LNCS 2757, pages 439–453.
Springer, 2002. Extended version at http://www.kb.ecei.
tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and
the pi-calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.

https://tel.archives-ouvertes.fr/tel-01676953
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://dx.doi.org/10.1145/330249.330251

references (cont.)

Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion
for session types. In Jacques Garrigue, Gabriele Keller, and Eijiro
Sumii, editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 434–447. ACM, 2016.

Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in
linear logic. Proc. ACM Program. Lang., 5(ICFP):1–31, 2021.

Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties
in transition systems - A temporal logic to deal with fairness. Acta
Informatica, 19:195–220, 1983.

Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):
384–418, 2014.

http://dx.doi.org/10.1145/2951913.2951921
http://dx.doi.org/10.1145/3473567
http://dx.doi.org/10.1007/BF00265555
http://dx.doi.org/10.1017/S095679681400001X

	Appendix
	References

