Linearity and the Pi Calculus, Revisited

Luca Padovani with Tzu-Chun Chen and Andrea Tosatto

Dipartimento di Informatica – Università di Torino – Italy

CoCo:PoPS - 8 June 2015

Type reconstruction for the linear π -calculus

Uses

- infer automatically properties of communicating processes
- explore some (possibly unconventional) meanings for "linear"

How it operates

- INPUT an untyped process P (π -calculus with data types)
- OUTPUT either fail or a type environment Γ such that $\Gamma \vdash P$

References for the type systems

- Padovani, Type reconstruction for the linear π -calculus with composite and equi-recursive types, FoSSaCS 2014
- Padovani, **Deadlock and lock freedom in the linear** π -calculus, CSL-LICS 2014

Programming languages and linearity

Dardha, Giachino, Sangiorgi, Session types revisited, PPDP 2012

Consequences

ullet binary sessions encodable in the (linear) $\pi ext{-calculus}$ with CPS

Programming languages and linearity

Dardha, Giachino, Sangiorgi, **Session types revisited**, PPDP 2012

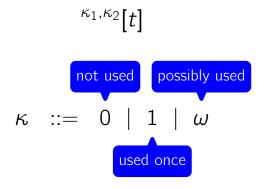
Consequences

- binary sessions encodable in the (linear) π -calculus with CPS
- any reasonable type system can express protocols
- the key missing ingredient is linearity

Reasonably typed PL	Linear π -calculus
channel types	linear channel types
product types	_
sum types	_
(equi-)recursive types	_

Tracking the use of channels

Channel types



Example

Uses

*succ?(x,r).r!(x + 1)

Combining type environments

$$\frac{\Gamma; \Delta_1 \vdash P \qquad \Gamma; \Delta_2 \vdash Q}{\Gamma; \Delta_1, \Delta_2 \vdash P \mid Q}$$

Combining type environments

$$\frac{\Gamma; \Delta_1 \vdash P \qquad \Gamma; \Delta_2 \vdash Q}{\Gamma; \Delta_1, \Delta_2 \vdash P \mid Q} \qquad \frac{\Gamma_1 \vdash P \qquad \Gamma_2 \vdash Q}{\Gamma_1 + \Gamma_2 \vdash P \mid Q}$$

Type combination

$$t+t=t$$
 if un(t) $\kappa_{1},\kappa_{2}[t]+\kappa_{3},\kappa_{4}[t]=\kappa_{1}+\kappa_{3},\kappa_{2}+\kappa_{4}[t]$

Use combination

$$0 + \kappa = \kappa + 0 = \kappa$$
$$1 + 1 = \omega$$
$$\omega + \kappa = \kappa + \omega = \omega$$

Examples

```
• Input + Output io.hy
a?x | a!3
```

```
• Output + Output oo.
```

```
Output + Extrusion (and odd channels)new a in { a!3 | b!a }
```

• Output + Extrusions oee.hy
new a in { a!3 | b!a | c!a }

More examples

recursive processes

fibonacci.hy

• recursive types (sync/async/odd)

from.hy

• recursive protocols (also odd)

from.hy

Compiling pattern matching

The successor service

*succ?(x,r).r!(x + 1)

The successor service, compiled

*succ?p.(snd p)!((fst p) + 1)

succ1.hy

succ2.hy

Combining composite types

$$t+t = t \qquad \text{if un}(t)$$

$$^{\kappa_1,\kappa_2}[t] + ^{\kappa_3,\kappa_4}[t] = ^{\kappa_1+\kappa_3,\kappa_2+\kappa_4}[t]$$

Two options

1 leave + as it is

 \Rightarrow syntactic linearity

Combining composite types

$$t+t=t$$
 if $\operatorname{un}(t)$ $\kappa_1,\kappa_2[t]+\kappa_3,\kappa_4[t]=\kappa_1+\kappa_3,\kappa_2+\kappa_4[t]$ $(t_1\times t_2)+(s_1\times s_2)=(t_1+s_1)\times(t_2+s_2)$

Two options

- 1 leave + as it is
 - ⇒ **syntactic** linearity
- 2 distribute + over composite types
- ⇒ **operational** linearity

Example: combining pairs

$$(int \times {}^{0,1}[int]) + (int \times {}^{0,0}[int])$$

Example: combining pairs

$$(\operatorname{int} \times {}^{0,1}[\operatorname{int}]) + (\operatorname{int} \times {}^{0,0}[\operatorname{int}])$$

$$\Downarrow$$

$$(\operatorname{int} + \operatorname{int}) \times ({}^{0,1}[\operatorname{int}] + {}^{0,0}[\operatorname{int}])$$

Example: combining pairs

```
(int \times {}^{0,1}[int]) + (int \times {}^{0,0}[int])
\Downarrow
(int + int) \times ({}^{0,1}[int] + {}^{0,0}[int])
\Downarrow
int \times {}^{0,1}[int]
```

*succ?p.(snd p)!((fst p) + 1)

Example: trees

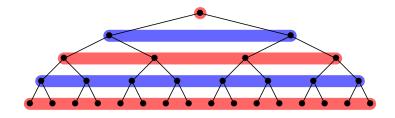
• even + odd

tree_even_odd.hy

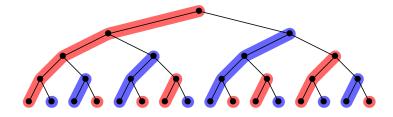
flip + flop

tree_flip_flop.hy

Channels used by even and odd



Channels used by flip and flop



Enforcing stronger properties

• a **linear** channel is a **promise** of communication

Enforcing stronger properties

• a linear channel is a promise of communication

Theorem (Kobayashi, Pierce, Turner, 1999)

A well-typed process performs at most one communication on each of its linear channels

Example

abba.hy

a?x.b!true | b?y.a!3

Deadlock and lock freedom

Definition

```
P is deadlock free if P \rightarrow^* \text{new } \tilde{a} \text{ in } Q \rightarrow \text{implies } \neg \text{wait}(a, Q)
```

```
P is lock free if P \to^* \text{new } \tilde{a} \text{ in } Q and wait(a, Q) implies Q \to^* R such that \text{sync}(a, R)
```

Note

- lock freedom implies deadlock freedom
- the converse also holds, for **finite** processes only

Example

later.hy

```
new a in { *c?x.c!x | c!a | a!3 }
```

Tracking the use of channels, refined

Annotated channel types

$$\kappa_1,\kappa_2[t]_k^h$$

Annotations

- level $h \in \mathbb{Z}$
- $k \in \mathbb{N}$ tickets

- \Rightarrow **order** in which channel is used
 - \Rightarrow max number of **delegations**

Examples

deadlock

abba.hy

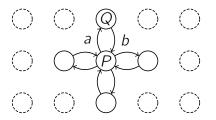
lock

later.hy

parallel recursive function (level polymorphism)
 fibonacci.hy

Example: half- and full-duplex communications

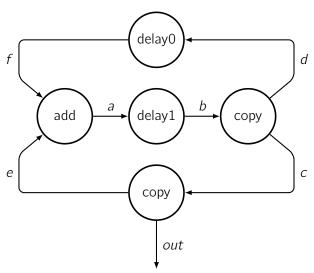
duplex.hy



```
*half?(a,b).
b?d.
new c in
{ a!c | half!(c,d) }
```

Example: Kahn process network

network.hy



Counter-examples

• some multiparty sessions

multiparty1.hy

sieve of Fratosthenes

sieve.hy

Note: lock freedom can be unreasonable

- recursion is well-founded (Fibonacci)
- there exist infinitely many prime numbers (sieve)

Paperware and software

- Mobayashi, Pierce, Turner, Linearity and the Pi Calculus, TOPLAS 1999
- Igarashi and Kobayashi, **Type Reconstruction for Linear** π -Calculus with I/O Subtyping, Inf. & Comp. 2000
- Padovani, Type reconstruction for the linear π -calculus with composite and equi-recursive types, FoSSaCS 2014
- Padovani, **Deadlock and lock freedom in the linear** π -calculus, CSL-LICS 2014
- Padovani, Chen, Tosatto, **Type reconstruction algorithms for deadlock-free and lock-free linear** π**-calculi**, COORD. 2015
- Hypha (available at http://di.unito.it/hypha)

Slides, papers, links on my home page