
fair termination of binary sessions
Luca Padovani, Università di Torino

joint work with Luca Ciccone
in proceedings of 49th annual Symposium on Principles of Programming Languages (POPL 2022)

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

general ideas

Definition
a binary session is a private communication channel linking two
processes, each using one session endpoint according to a
protocol specification called session type

P Q
x : !a.?b.!end

x : ?a.!b.?end

session types may have branching points

?a.S + ?b.T !a.S ⊕ !b.T

session types may be “recursive” (i.e. infinite regular trees)

S = ?a.S + ?b.T

2 / 22

goal

enable the compositional static analysis of distributed programs

during the execution of a well-typed distributed program. . .
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• processes don’t get stuck (deadlock freedom)

. . . and in this work
• all sessions terminate, sooner or later (fair termination)

3 / 22

goal

enable the compositional static analysis of distributed programs

during the execution of a well-typed distributed program. . .
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• processes don’t get stuck (deadlock freedom)

. . . and in this work
• all sessions terminate, sooner or later (fair termination)

3 / 22

the shopper, the store and the shipper

A B C
add or pay

x

ship

y

A(x)
M
= . . . shopper adds items to cart and pays. . .

B(x, y)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

C(y)
M
= y?ship.wait y.done

(x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

4 / 22

session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

5 / 22

session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

5 / 22

session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

5 / 22

session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

5 / 22

session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

5 / 22

on parallel composition and duality

x : T, y : S ` B〈x, y〉 y : S⊥ ` C〈y〉

x : T ` (y)(B〈x, y〉 | C〈y〉)

Notes
• store and shipper use y according to dual session types

S = !ship.!end S⊥ = ?ship.?end

• checking that a parallel composition is well typed boils down
to checking a simple property of types

(compositional analysis!)
6 / 22

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

a moltitude of shopper protocols

The store complies with one protocol

T = ?add.T + ?pay.?end

The shopper may comply with many different protocols

T⊥ = R = !add.R⊕ !pay.!end any number of items

R1 = !add.R at least one item

Rodd = !add.(!add.Rodd ⊕ !pay.!end) odd number of items

. . . many more possibilities

Only R is the dual of T , but all should be “compatible” with T

7 / 22

subtyping for session types, two viewpoints
[Gay and Hole, 2005]

right-to-left substitution of endpoints [Liskov and Wing, 1994]

• when S 6 T an endpoint of type T can be safely replaced
by an endpoint of type S

?a 6 ?a + ?b
covariant inputs

!a⊕ !b 6 !a
contravariant outputs

left-to-right subst. of processes [De Nicola and Hennessy, 1984]

• when S 6 T a process complying with protocol S can be
safely replaced by a process complying with protocol S

8 / 22

expected versus actual shopper

Rodd = !add.(!add.Rodd ⊕ !pay.!end) actual behavior
T⊥ = R = !add.R⊕ !pay.!end expected behavior

x : Rodd ` A〈x〉
T⊥ 6 Rodd

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

9 / 22

soundness. . . and lack thereof

Theorem
In a well-typed program
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• programs don’t get stuck (deadlock freedom)

Desideratum
Also, in a well-typed program
• all sessions eventually terminate (fair termination)

Facts
There exist well-typed processes in which sessions don’t terminate,
sent messages are not delivered, awaited messages are not sent. . .

10 / 22

soundness. . . and lack thereof

Theorem
In a well-typed program
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• programs don’t get stuck (deadlock freedom)

Desideratum
Also, in a well-typed program
• all sessions eventually terminate (fair termination)

Facts
There exist well-typed processes in which sessions don’t terminate,
sent messages are not delivered, awaited messages are not sent. . .

10 / 22

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

fair termination

Definition (fair termination)
We say that P is fairly terminating if P =⇒ Q implies Q =⇒ done

Intuition
If termination is always possible then (we assume) it is inevitable

Consider the shopper complying with R = !add.R⊕ !pay.!end
• in theory, the shopper may send add forever
• in practice, the shopper eventually sends pay and terminates

In the literature
• instance of relative fairness [Queille and Sifakis, 1983]
• instance of ∞-fairness [Best, 1984]

11 / 22

properties of fairly terminating programs

In a fairly terminating program
• every sent message is eventually delivered (no junk)
• every expected message eventually arrives (no starvation)
• every session eventually terminates (fair session termination)

P −→ · · · −→ Q

−→ · · · −→ done

partial execution

feasibility [Apt et al., 1987] aka machine closure [Lamport, 2000]
• every partial execution can be extended to a maximal fair one

12 / 22

properties of fairly terminating programs

In a fairly terminating program
• every sent message is eventually delivered (no junk)
• every expected message eventually arrives (no starvation)
• every session eventually terminates (fair session termination)

P −→ · · · −→ Q −→ · · · −→ done

partial execution

maximal fair execution

feasibility [Apt et al., 1987] aka machine closure [Lamport, 2000]
• every partial execution can be extended to a maximal fair one

12 / 22

problem: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

Notes
• this program is deadlock-free but not fairly terminating
• the sessions x and y don’t (and cannot) terminate
• the shipper awaits for a message that is never sent

6 was designed to preserve safety, not liveness

13 / 22

problem: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

Notes
• this program is deadlock-free but not fairly terminating
• the sessions x and y don’t (and cannot) terminate
• the shipper awaits for a message that is never sent

6 was designed to preserve safety, not liveness

13 / 22

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

fair subtyping
[Padovani, 2013, 2016, Ciccone and Padovani, 2021]

p end 6 p end

Sk 6 Tk
!{ai : Si}i∈I 6 !{aj : Tj}j∈J
======================== corule

Si 6 Ti (∀i∈I)

?{ai : Si}i∈I 6 ?{ai : Ti}i∈I∪J
Si 6 Ti (∀i∈I)

!{ai : Si}i∈I∪J 6 !{ai : Ti}i∈I

We say that S is a fair subtype of T if
• there is an arbitrary derivation of S 6 T using just rules, and
• there is a finite derivation of S 6 T using rules and corules

Instance of generalized inference system [Ancona et al., 2017]

14 / 22

example of fair subtyping

R = !add.R⊕ !pay.!end R1 = !add.R

...

R 6 R !end 6 !end

R 6 R

R 6 R1

!end 6 !end
=========

R 6 R

R 6 R1

R 6 R1

Note
• there is no finite derivation of R 6 R1 without the corule

15 / 22

example of unfair subtyping

R = !add.R⊕ !pay.!end R∞ = !add.R∞

...

R 6 R∞

R 6 R∞

...
======
R 6 R∞
======
R 6 R∞

R 66 R∞

Note
• there is no finite derivation of R 6 R1, even with the corule

16 / 22

compulsive shopping is not allowed. . .

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

17 / 22

compulsive shopping is not allowed. . . or is it?
A different typing derivation for the compulsive shopper

A(x)
M
= x!add.A〈x〉

R = !add.R⊕ !pay.!end
R1 = !add.R

x : R ` A〈x〉

x : R1 ` x!add.A〈x〉
R 6 R1

x : R ` x!add.A〈x〉

Poset of session types ordered by fair subtyping is not ω-complete
• “infinitely many” usages of fair subtyping (R 6 R1) may have

the same overall effect of unfair subtyping (R 6 R∞)

R 6 !add.R 6 !add.!add.R 6 · · · 66 R∞

• well-typed processes should only be allowed to perform a
bounded number of casts

18 / 22

cast boundedness

Enrich typing judgments with a rank

Γ `n P

• P is well-typed in Γ and has rank n
• n is an upper bound to the number of casts performed by P

The compulsive shopper has no finite rank

x : R `n A〈x〉

x : R1 `n x!add.A〈x〉
R 6 R1

x : R `n+1 x!add.A〈x〉

19 / 22

fair termination, at last

Theorem
If P is well typed then P is fairly terminating

Proof idea.
Show that typing is preserved by reductions (subject reduction):
• if Γ `n P and P −→ Q, then Γ `n Q

Define a measure for well-typed processes that includes n as well
as the effort required to terminate all open sessions:
• Γ `µ P

Show that for every non-terminated, well-typed program there
exists a reduct with a strictly smaller measure:
• if ∅ `µ P, either P = done or P −→ Q and ∅ `ν Q where ν < µ

Note, the measure may increase if new sessions are opened

20 / 22

outline

1 a quick introduction to binary sessions

2 on subtyping and why it matters

3 fair termination

4 on fair subtyping and how to use it

5 concluding remarks

summary

A compositional static analysis ensuring fair termination
• well-typed sessions (fairly) terminate

Want more?
• many simplifications in this talk
• see Ciccone and Padovani [2022] for details

(higher-order sessions, proofs, type checking algorithm, . . .)
• presented at POPL next week

21 / 22

further and future work

FairCheck
• Haskell implementation of the type checker
• available on GitHub (link from my home page)

Application to other communication models
• multiparty sessions (easy)
• actors, concurrent objects, smart contracts (harder)

thank you!

22 / 22

further and future work

FairCheck
• Haskell implementation of the type checker
• available on GitHub (link from my home page)

Application to other communication models
• multiparty sessions (easy)
• actors, concurrent objects, smart contracts (harder)

thank you!

22 / 22

references

Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing
inference systems by coaxioms. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of
Lecture Notes in Computer Science, pages 29–55. Springer, 2017. �

Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in
languages for distributed programming. In Conference Record of the
Fourteenth Annual ACM Symposium on Principles of Programming
Languages, Munich, Germany, January 21-23, 1987, pages 189–198.
ACM Press, 1987. �

Eike Best. Fairness and conspiracies. Inf. Process. Lett., 18(4):215–220,
1984. � URL https://doi.org/10.1016/0020-0190(84)90114-5.

http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.1145/41625.41642
http://dx.doi.org/10.1016/0020-0190(84)90114-5
https://doi.org/10.1016/0020-0190(84)90114-5

references (cont.)

Luca Ciccone and Luca Padovani. Inference Systems with Corules for
Fair Subtyping and Liveness Properties of Binary Session Types. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors,
Proceedings of the 48th International Colloquium on Automata,
Languages, and Programming (ICALP’21), volume 198 of LIPIcs, pages
125:1–125:16, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. �

Luca Ciccone and Luca Padovani. Fair Termination of Binary Sessions.
Proceedings of the ACM on Programming Languages, 6, 2022.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for
processes. Theor. Comput. Sci., 34:83–133, 1984. �

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2-3):191–225, 2005. �

Leslie Lamport. Fairness and hyperfairness. Distributed Comput., 13(4):
239–245, 2000. �

22 / 22

http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.125
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/PL00008921

references (cont.)

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994. �

Luca Padovani. Fair subtyping for open session types. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, volume 7966 of Lecture Notes in Computer Science, pages
373–384. Springer, 2013. �

Luca Padovani. Fair subtyping for multi-party session types. Math. Struct.
Comput. Sci., 26(3):424–464, 2016. �

Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties
in transition systems - A temporal logic to deal with fairness. Acta
Informatica, 19:195–220, 1983. � URL
https://doi.org/10.1007/BF00265555.

22 / 22

http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1007/978-3-642-39212-2_34
http://dx.doi.org/10.1017/S096012951400022X
http://dx.doi.org/10.1007/BF00265555
https://doi.org/10.1007/BF00265555

	a quick introduction to binary sessions
	on subtyping and why it matters
	fair termination
	on fair subtyping and how to use it
	concluding remarks
	Appendix
	References

