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general ideas

Definition
a binary session is a private communication channel linking two
processes, each using one session endpoint according to a
protocol specification called session type

P Q
x : !a.?b.!end

x : ?a.!b.?end

session types may have branching points

?a.S + ?b.T !a.S ⊕ !b.T

session types may be “recursive” (i.e. infinite regular trees)

S = ?a.S + ?b.T
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goal

enable the compositional static analysis of distributed programs

during the execution of a well-typed distributed program. . .
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• processes don’t get stuck (deadlock freedom)

. . . and in this work
• all sessions terminate, sooner or later (fair termination)
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the shopper, the store and the shipper

A B C
add or pay

x

ship

y

A(x)
M
= . . . shopper adds items to cart and pays. . .

B(x, y)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

C(y)
M
= y?ship.wait y.done

(x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))
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session type checking, in one slide

structure of types⇐⇒ structure of process
Γ ` P

B(x : T, y : S)
M
= x?{add : B〈x, y〉, pay : wait x.y!ship.close y}

T = ?add.T + ?pay.?end S = !ship.!end

x : T, y : S ` B〈x, y〉

y : !end ` close y

y : S ` y!ship.close y

x : ?end, y : S ` wait x.y!ship.close y

x : T, y : S ` x?{add : B〈x, y〉, pay : wait x.y!ship.close y}
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on parallel composition and duality

x : T, y : S ` B〈x, y〉 y : S⊥ ` C〈y〉

x : T ` (y)(B〈x, y〉 | C〈y〉)

Notes
• store and shipper use y according to dual session types

S = !ship.!end S⊥ = ?ship.?end

• checking that a parallel composition is well typed boils down
to checking a simple property of types

(compositional analysis!)
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a moltitude of shopper protocols

The store complies with one protocol

T = ?add.T + ?pay.?end

The shopper may comply with many different protocols

T⊥ = R = !add.R⊕ !pay.!end any number of items

R1 = !add.R at least one item

Rodd = !add.(!add.Rodd ⊕ !pay.!end) odd number of items

. . . many more possibilities

Only R is the dual of T , but all should be “compatible” with T
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subtyping for session types, two viewpoints
[Gay and Hole, 2005]

right-to-left substitution of endpoints [Liskov and Wing, 1994]

• when S 6 T an endpoint of type T can be safely replaced
by an endpoint of type S

?a 6 ?a + ?b
covariant inputs

!a⊕ !b 6 !a
contravariant outputs

left-to-right subst. of processes [De Nicola and Hennessy, 1984]

• when S 6 T a process complying with protocol S can be
safely replaced by a process complying with protocol S
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expected versus actual shopper

Rodd = !add.(!add.Rodd ⊕ !pay.!end) actual behavior
T⊥ = R = !add.R⊕ !pay.!end expected behavior

x : Rodd ` A〈x〉
T⊥ 6 Rodd

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))
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soundness. . . and lack thereof

Theorem
In a well-typed program
• exchanged messages have the expected type (comm. safety)
• interactions occur in the expected order (protocol fidelity)
• programs don’t get stuck (deadlock freedom)

Desideratum
Also, in a well-typed program
• all sessions eventually terminate (fair termination)

Facts
There exist well-typed processes in which sessions don’t terminate,
sent messages are not delivered, awaited messages are not sent. . .
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fair termination

Definition (fair termination)
We say that P is fairly terminating if P =⇒ Q implies Q =⇒ done

Intuition
If termination is always possible then (we assume) it is inevitable

Consider the shopper complying with R = !add.R⊕ !pay.!end
• in theory, the shopper may send add forever
• in practice, the shopper eventually sends pay and terminates

In the literature
• instance of relative fairness [Queille and Sifakis, 1983]
• instance of ∞-fairness [Best, 1984]
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properties of fairly terminating programs

In a fairly terminating program
• every sent message is eventually delivered (no junk)
• every expected message eventually arrives (no starvation)
• every session eventually terminates (fair session termination)

P −→ · · · −→ Q

−→ · · · −→ done

partial execution

feasibility [Apt et al., 1987] aka machine closure [Lamport, 2000]
• every partial execution can be extended to a maximal fair one
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problem: the compulsive shopper

A(x)
M
= x!add.A〈x〉 R∞ = !add.R∞

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))

Notes
• this program is deadlock-free but not fairly terminating
• the sessions x and y don’t (and cannot) terminate
• the shipper awaits for a message that is never sent

6 was designed to preserve safety, not liveness
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fair subtyping
[Padovani, 2013, 2016, Ciccone and Padovani, 2021]

p end 6 p end

Sk 6 Tk
!{ai : Si}i∈I 6 !{aj : Tj}j∈J
======================== corule

Si 6 Ti (∀i∈I)

?{ai : Si}i∈I 6 ?{ai : Ti}i∈I∪J
Si 6 Ti (∀i∈I)

!{ai : Si}i∈I∪J 6 !{ai : Ti}i∈I

We say that S is a fair subtype of T if
• there is an arbitrary derivation of S 6 T using just rules, and
• there is a finite derivation of S 6 T using rules and corules

Instance of generalized inference system [Ancona et al., 2017]
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example of fair subtyping

R = !add.R⊕ !pay.!end R1 = !add.R

...

R 6 R !end 6 !end

R 6 R

R 6 R1

!end 6 !end
=========

R 6 R

R 6 R1

R 6 R1

Note
• there is no finite derivation of R 6 R1 without the corule
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example of unfair subtyping

R = !add.R⊕ !pay.!end R∞ = !add.R∞

...

R 6 R∞

R 6 R∞

...
======
R 6 R∞
======
R 6 R∞

R 66 R∞

Note
• there is no finite derivation of R 6 R1, even with the corule
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compulsive shopping is not allowed. . .

x : R∞ ` A〈x〉
T⊥ 6 R∞

x : T⊥ ` A〈x〉

...

x : T ` (y)(B〈x, y〉 | C〈y〉)

∅ ` (x)(A〈x〉 | (y)(B〈x, y〉 | C〈y〉))
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compulsive shopping is not allowed. . . or is it?
A different typing derivation for the compulsive shopper

A(x)
M
= x!add.A〈x〉

R = !add.R⊕ !pay.!end
R1 = !add.R

x : R ` A〈x〉

x : R1 ` x!add.A〈x〉
R 6 R1

x : R ` x!add.A〈x〉

Poset of session types ordered by fair subtyping is not ω-complete
• “infinitely many” usages of fair subtyping (R 6 R1) may have

the same overall effect of unfair subtyping (R 6 R∞)

R 6 !add.R 6 !add.!add.R 6 · · · 66 R∞

• well-typed processes should only be allowed to perform a
bounded number of casts
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cast boundedness

Enrich typing judgments with a rank

Γ `n P

• P is well-typed in Γ and has rank n
• n is an upper bound to the number of casts performed by P

The compulsive shopper has no finite rank

x : R `n A〈x〉

x : R1 `n x!add.A〈x〉
R 6 R1

x : R `n+1 x!add.A〈x〉
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fair termination, at last

Theorem
If P is well typed then P is fairly terminating

Proof idea.
Show that typing is preserved by reductions (subject reduction):
• if Γ `n P and P −→ Q, then Γ `n Q

Define a measure for well-typed processes that includes n as well
as the effort required to terminate all open sessions:
• Γ `µ P

Show that for every non-terminated, well-typed program there
exists a reduct with a strictly smaller measure:
• if ∅ `µ P, either P = done or P −→ Q and ∅ `ν Q where ν < µ

Note, the measure may increase if new sessions are opened
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summary

A compositional static analysis ensuring fair termination
• well-typed sessions (fairly) terminate

Want more?
• many simplifications in this talk
• see Ciccone and Padovani [2022] for details

(higher-order sessions, proofs, type checking algorithm, . . . )
• presented at POPL next week
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further and future work

FairCheck
• Haskell implementation of the type checker
• available on GitHub (link from my home page)

Application to other communication models
• multiparty sessions (easy)
• actors, concurrent objects, smart contracts (harder)

thank you!
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