
A Logic for Mailboxes

Ornela Dardha and Luca Padovani

Which message do you read first?

Time Subject

4:00am Increase your H-index

5:30am Review request

6:00am [ECOOP 2018] Notification

1/16

Selective message processing

Q

m
ai

lb
ox

P1 P2 P3

Context
• many-to-one communications
• unpredictable message order
• messages selected by tag, type,

shape, . . .
Examples
• actor model

Akka, Pony, Erlang, CAF, . . .
• concurrent objects

locks, futures, semaphores, . . .

2/16

Mailbox type system [De’Liguoro and Padovani, 2018]

A type system for mailbox interactions

• well-typed processes interact safely

• don’t receive unexpected messages
• don’t leave garbage behind
• don’t deadlock

Addressing “impure” actors to some extent
“We studied 15 large, mature, and actively maintained actor
programs written in Scala and found that 80% of themmix
the actor model with another concurrency model”

Tasharofi et al. [2013]

3/16

Syntax of the Mailbox Calculus

Asynchronous π-calculus + tagged messages + fail/free

Process P,Q ::= done
| X[u]

| G
| u!m[v]

| P|Q
| (νa)P

Guard G,H ::= fail u
| free u.P
| u?m(x).P
| G + H

4/16

A simple example: the lock

Idle(lock) , free lock.done
+ lock?acquire(user).(user!reply[lock]|Busy[lock])

+ lock?release.fail lock

Busy(lock) , lock?release.Idle[lock]

• a lock is either idle or busy
• an idle lock can be acquired, but cannot be released
• a busy lock must be released

5/16

Properties

Definition
P is mailbox conformant if P X→∗ C[fail a]

Example (non-conformant process)
Idle(lock)|lock!release

Definition
P is deadlock free if P→∗ Q X→ implies Q ≡ done

Example (conformant but deadlocking process)

Idle(lock)|lock!acquire[user]|lock!acquire[user]

| user?reply(l1).user?reply(l2).(l1!release|l2!release)

6/16

Mailbox Types

type τ process
?A provide one A
!A consume one A

?(A · B) consume both A and B internally ordered
!(A · B) provide both A and B externally ordered
?(A + B) consume either A or B externally chosen
!(A + B) provide either A and B internally chosen

?1 consume nothing
!1 provide nothing
?0 throw exception
!0 −
?A∗ consume some As externally chosen
!A∗ provide some As internally chosen

7/16

Typing Judgments

Γ ` P

Intuition

• Γ = messages produced by P − messages consumed by P

Consequence

• all types in Γ are ?1 ⇐⇒ P breaks even

8/16

Example of typing derivation 1

u : !A ` u!A

u : !B ` u!B

...

u : ?B ` u?B.P

u : ?A · B ` u?A.u?B.P

u : ?A ` u!B|u?A.u?B.P

u : ?1 ` u!A|(u!B|u?A.u?B.P)

9/16

Example of typing derivation 2

u : !B ` u!B u : !A ` u!A

u : !B · A ` u!B|u!A

...

u : ?B ` u?B.P

u : ?A · B ` u?A.u?B.P

u : ?1 ` (u!B|u!A)|u?A.u?B.P

10/16

Example of typing derivation 2

u : !B ` u!B u : !A ` u!A

u : !A · B ` u!B|u!A

...

u : ?B ` u?B.P

u : ?A · B ` u?A.u?B.P

u : ?1 ` (u!B|u!A)|u?A.u?B.P

10/16

Lock’s mailbox

?acquire[!reply[!release]]∗

Idle(lock) , free lock.done
+ lock?acquire(user).(user!reply[lock]|Busy[lock])

+ lock?release.fail lock

Busy(lock) , lock?release.Idle[lock]

?release · acquire[· · ·]∗

?acquire∗ = ?1 + acquire · acquire∗ + release · 0

11/16

Lock’s mailbox

?acquire[!reply[!release]]∗

Idle(lock) , free lock.done
+ lock?acquire(user).(user!reply[lock]|Busy[lock])

+ lock?release.fail lock

Busy(lock) , lock?release.Idle[lock]

?release · acquire[· · ·]∗

?acquire∗ = ?1 + acquire · acquire∗ + release · 0

11/16

Properties of Well-Typed Processes

Theorem (conformance)
If Γ ` P, then P is mailbox conformant

Lemma (type preservation)
If Γ ` P and P→ Q, then Γ ` Q

Remark
Types in Γ are preserved, also when the type of a mailbox isn’t

This process is mailbox conformant but deadlocks

Idle(lock)|lock!acquire[user]|lock!acquire[user]

| user?reply(l1).user?reply(l2).(l1!release|l2!release)

12/16

On deadlocks and mailbox dependencies

Definition (mailbox dependency)
There is a dependency between mailboxes u and v if either

• v occurs in the continuation of a process blocked on u
• v occurs in a message stored in u

Strategy

1. collect mailbox dependencies in a graph ϕ

Γ ` P :: ϕ

2. make sure the graph has no cycles

13/16

Properties of well-typed processes, strengthened

Theorem (deadlock freedom)
If ∅ ` P :: ϕ, then P is deadlock free

Theorem (fair termination)
If ∅ ` P :: ϕ for P finitely unfolding, then P→∗ Q implies Q→∗ done

Corollary (garbage freedom)
Closed, well-typed, finitely-unfolding processes leave no garbage

14/16

Concluding Remarks

An interpretation of first-order mailbox types into µMALL

E !̂E ?̂E
0 0 >
1 1 ⊥
m m m⊥

E + F !̂E⊕ !̂F ?̂E N ?̂F
E · F !̂E⊗ !̂F ?̂E O ?̂F

E∗ µX.1⊕ !̂E⊕ (X ⊗ X) νX.⊥N ?̂E N (X O X)

• σ ≤ τ i� ` τ̂⊥, σ̂ derivable in (one sided) µMALL
• typing rules for mailbox calculus ∼ inference rules for µMALL

Unresolved issues

• interpretation of higher-order mailbox types
• relationship between reduction and cut elimination

15/16

An interpretation of first-order mailbox types into µMALL

E !̂E ?̂E
0 0 >
1 1 ⊥
m m m⊥

E + F !̂E⊕ !̂F ?̂E N ?̂F
E · F !̂E⊗ !̂F ?̂E O ?̂F
E∗ µX.1⊕ !̂E⊕ (X ⊗ X) νX.⊥N ?̂E N (X O X)

• σ ≤ τ i� ` τ̂⊥, σ̂ derivable in (one sided) µMALL
• typing rules for mailbox calculus ∼ inference rules for µMALL

Unresolved issues

• interpretation of higher-order mailbox types
• relationship between reduction and cut elimination

15/16

Wrap up

• mailbox calculus ∼ actors with first-class/multiple mailboxes
• mailbox types ∼ descriptions of unordered mailboxes

In the paper [De’Liguoro and Padovani, 2018]

• more examples (actors using futures, master-workers)
• encoding of binary sessions with joins and forks

Proof-of-concept implementation available

• subtyping can be as complex as validity of
Presburger formulas

• potentially lots of type annotations,
Newtonian program analysis to the rescue
[Esparza et al., 2010]

16/16

http://www.di.unito.it/~padovani/Software/MCC/index.html

References

Ugo De’Liguoro and Luca Padovani. Mailbox Types for Unordered
Interactions. Technical report, Università di Torino, 2018. URL
https://arxiv.org/abs/1801.04167.

Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Newtonian
program analysis. J. ACM, 57(6):33:1–33:47, November 2010. ISSN
0004-5411. �

Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why do scala
developers mix the actor model with other concurrency models? In
Proceedings of ECOOP’13, LNCS 7920, pages 302–326. Springer, 2013. �

https://arxiv.org/abs/1801.04167
http://dx.doi.org/10.1145/1857914.1857917
http://dx.doi.org/10.1007/978-3-642-39038-8_13

	Concluding Remarks
	Appendix
	References

