
45

The Gnome DOM Engine

Paolo Casarini
Department of Computer Science, University of
Bologna
Mura Anteo Zamboni, 7
40127
Bologna, Italy
email casarini@cs.unibo.it
web http://www.cs.unibo.it/~casarini

Luca Padovani
Department of Computer Science, University of
Bologna
Mura Anteo Zamboni, 7
40127
Bologna, Italy
email luca.padovani@cs.unibo.it
web http://www.cs.unibo.it/~lpadovan

ABSTRACT
The widespread use of Web technologies and, in particular, the ever
growing number of applications adopting XML [XML00] as the
standard language for the encoding of any piece of structured
information, naturally calls for efficient implementations of DOM, the
standard interface to access the internal structure of documents.

The DOM level 2 API [DOM], which has been conceived as a
suitable hierarchy of classes, has its most natural mapping in object-
oriented languages such as C++ [CPP] and Java [Java]. This is also
testified by the already existing implementations in those languages.
However, as of today, most applications are commonly developed in C,
because of its standardization, flexibility, efficiency and availability.

In this paper we describe the current state of Gdome2, which
provides a DOM implementation for the C programming language [C].
The library is meant to become a key module of the Gnome architecture,
supplying a range of facilities for an efficient, portable, and easy
management of XML documents in the Gnome way.

We conclude with a comparison between Gdome2 and Xerces, one
of the more advanced and actively developed DOM implementations.

KEYWORDS
DOM; XML; C Programming Language; Implementation; Gnome
Desktop Environment

Paolo Casarini and Luca Padovani

46 Extreme Markup Languages 2001

INTRODUCTION
Quoting from the W3C (World Wide Web Consortium) page
about DOM (Document Object Model) [DOM]

The Document Object Model (DOM) is a platform
and language-neutral interface that will allow pro-
grams and scripts to dynamically access and update
the content, structure and style of documents.

More concretely, the DOM Level 2 specification defines
a hierarchy of interfaces providing an object-oriented API
(Application Programming Interface) to navigate and operate
on valid HTML (HyperText Markup Language) or well-
formed XML (Extensible Markup Language) documents
[HUN00] [XML00].

Interfaces are provided for the management of elements,
attributes, text nodes, as well as the other XML node types.
When speaking of these entities in general, we will call them
document nodes. In fact, Node is one of the fundamental
DOM interfaces from which most of the other entities derive.
Basic node operations include creation, deletion and re-
trieval. Beside that, the DOM specification provides also a
set of interfaces for the implementation of event-driven ap-
plications. Events can be triggered by physical user actions
(such as GUI (Graphical User Interface) events) and by mod-
ifications of the document structure and content.

A DOM implementation (also called a host implemen-
tation) is a piece of software which implements all (or a subset
of) the interfaces defined in the DOM specification. In the
simplest view, it takes a parsed XML document and makes it
available for processing via some language-dependent imple-
mentation of the DOM interfaces. But another fundamental
aspect of the whole DOM architecture is that DOM provides
just a minimal interface, and that each application can im-
plement more specific classes derived from the basic ones.

The Gnome (GNU Network Object Model Environ-
ment) DOM Engine (Gdome2 (Gnome DOM Engine) for
short, see http://www.cs.unibo.it/~casarini/gdome2/) is a
DOM implementation whose aim is to provide an interface
to XML documents to Gnome programmers which is:

• efficient;
• easy to use;
• compliant to W3C standards.

Basically, the problem is that in usual DOM implementations
there is a considerable overhead: application are forced to use
a fairly narrow interface to be able to modify and access their
state. Furthermore, there are also bloated memory require-
ments for the storing of the state itself.

So, our primary goal is to make the DOM an attractive
interface for Gnome1 applications, in order to save their state,
configuration, data and so on. Furthermore, as already
pointed out in [LEVDOM99], we are also exploring the pos-

1. http://www.gnome.org

sibility of providing a unified framework allowing mixing of
components within the same application, each component
being responsible for managing a particular subset of markup
inside a XML document (typically, markup belonging to a
given namespace [Names99]). This is the so called document
centric architecture for applications, where the central struc-
ture is given by the document and components are plugged
in as needed.

Gdome2, whose aim is to address these issues, currently
supports “Core” and “XML” modules as defined in the DOM
Level 2 Specification2 but it is supposed to become a full
implementation of all the DOM Level 2 interfaces. However,
much of the design issues are decided in this phase, because
most of the other modules and levels are built on top of this
core interface.

REFERENCE TO THE LIBRARY
In this section we will give an overview to some of the APIs
implemented in Gdome2, in particular to the non-standard
ones. We will also give the skeleton of a simple program based
on Gdome2.

API Conventions

In Gdome2, attributes and methods described in the DOM
level 2 interfaces are implemented as C functions. In the rest
of the paper, we will often use the term method to denote the
C function implementing the DOM method.

Naming Conventions
Each DOM interface has a corresponding C type whose
name is the name of the DOM interface itself with a prefix
Gdome. For example, GdomeNode is the type corresponding
to the DOM interface Node.

All API function names start with the string gdome_

(identifying the Gdome2 library namespace) followed by an
abbreviated prefix indicating the DOM interface the method
refers to. In the following table we give the complete corre-
spondence between the DOM Interfaces and the Gdome2
prefixes.

Gdome2 Prefixes
DOM Interface Gdome2 Prefix

DOMImplementation di_

DocumentFragment df_

Document doc_

Node n_

NodeList nl_

NamedNodeMap nnm_

2. The 2 in the Gdome2 has nothing to do with the Level 2 in the DOM
Specification. It is just to distinguish the package from a previous version
never released officially.

The Gnome DOM Engine

Extreme Markup Languages 2001 47

CharacterData cd_

Attr a_

Element el_

Text t_

Comment c_

CDATASection cds_

DocumentType dt_

Notation not_

Entity ent_

EntityReference er_

ProcessingInstruction pi_

Then, the syntax changes depending on the kind of
method or attribute access implemented by the function. Ex-
plicit methods are provided for reading and writing attribute
values (write access to read-only attributes is simply prevented
by the lack of the corresponding writing method).

The syntax of Gdome2 API functions is summarized in
a more formal below, where DOMMethodName and
DOMAttrName are place-holders for the name of, respec-
tively, interface methods and interface attributes in the DOM
specification.

Gdome2Method ::= 'gdome_' InterfacePrefix DOMMethodName

Gdome2SetAttr ::= 'gdome_' InterfacePrefix 'set_' DOMAttrName

Gdome2GetAttr ::= 'gdome_' InterfacePrefix DOMAttrName

Parameters Conventions
All Gdome2 functions implementing a DOM API have two
extra parameters in comparison with the DOM specification:
the first parameter is always a reference to the object for
which we are invoking the method.3 This parameter is usually
implicit in object-oriented languages where it is referred to
as self or this. The last parameter is always a reference to a
GdomeException structure used to store the exception possibly
raised by the method invocation (we recall that the C pro-
gramming language [C] does not have a native mechanism
for handling exceptions). All the other parameters in inter-
mediate positions are in a one-to-one correspondence with
the parameters specified in the DOM interface.

As an example, the method appendChild of the Node in-
terface is implemented in Gdome2 by a function with the
following prototype:

GdomeNode *gdome_n_appendChild (GdomeNode *self,

GdomeNode *newChild,

GdomeException *exc)

GdomeDOMString

The implementation of DOMString deserves a section on its
own, since it is the only one which differs in some aspects

3. In fact, this is a quite common implementation choice for object-oriented
programming languages.

from the DOM specification. In fact, the specification re-
quires a DOMString to be encoded using UTF (UCS Trans-
formation Format)-16 [Unicode], while Gdome2 invariably
uses a UTF-8 encoding [UTF-8]. This is because Gdome2
acts like a wrapper for another library for parsing XML doc-
uments, libxml2, which already adopts internally the UTF-8
encoding.

Some of the rationales for this choice are the following
(see [encoding] for a more exhaustive treatment of this sub-
ject in the context of libxml2):

• UTF-8, while a bit more complex to convert from/to with
respect to UTF-16, is also far more compact for a major-
ity of the documents.

• UTF-8 is being used as the de-facto internal standard
encoding in the upcoming Gnome text widget
[LEVTXT99] [LEVPA99], and a lot of other Unix/Linux
code.

In practice, the GdomeDOMString is a simple structure made
of a field str which is a pointer to a sequence of bytes assem-
bled as a UTF-8 valid string. So Gdome2 users only need to
make sure that characters outside the plain ASCII (American
Standard Code for Information Interchange) set are properly
converted to UTF-8.

In the near future, we plan to add access and conversion
methods taking into account other encodings such as UTF-
16.

To manage GdomeDOMString object allocation, Gdome2
has 3 different constructors, depending on the storage allo-
cation class of the source string used as initializer:

GdomeDOMString *gdome_str_mkref(const gchar* str)

GdomeDOMString *gdome_str_mkref_own(gchar* str)

GdomeDOMString *gdome_str_mkref_dup(const gchar* str)

gdome_str_mkref creates a GdomeDOMString from a stat-
ically allocated string. gdome_str_mkref_own must be used
when the user wants to make a GdomeDOMString from a dy-
namically allocated gchar buffer. The buffer will be freed
automatically upon destruction of the object. Finally,
gdome_str_mkref_dup is similar to the previous one, but a
copy of the initializing string is done before construction.

In order to release a GdomeDOMString, just use its de-
structor gdome_str_unref.

Gdome2 Bootstrap

The first step for any application using Gdome2 is the instan-
tiation of a DOMImplementation object, which provides a num-
ber of methods for performing operations independent of any
particular instance of the document object model, such as
the creation of new Document and DocumentType objects.

The Gdome2 API to create a GdomeDOMImplementation

is gdome_di_mkref.

Paolo Casarini and Luca Padovani

48 Extreme Markup Languages 2001

Standard way to Create a GdomeDocument

Within the DOM specification, the only way to create a Doc-

ument object is by means of the createDocument method in
the DOMImplementation interface.

In Gdome2 this feature is implemented by

GdomeDocument*

gdome_di_createDocument (GdomeDOMImplementation *self,

GdomeDOMString *namespaceURI,

GdomeDOMString *qualifiedName,

GdomeDocumentType *doctype,

GdomeException *exc)

which creates a Document object of the specified type with a
root element specified by namespaceURI and qualifiedName.

Gdome2 also implements a non standard way to create
a new Document object parsing a XML document identified
by a URI (Uniform Resource Identifier):

GdomeDocument*

gdome_di_parseFile (GdomeDOMImplementation *self,

const gchar* uri,

GdomeException* exc)

The document can also be validated using
gdome_DOMimplementation_validateFile which has the same
prototype as the method above.

A Simple Example

To illustrate some of the most common functionalities of
Gdome2 we present here a simple example solving a frequent
task, namely the removal of comments and blank nodes from
a DOM tree. This can be useful, for example, to enforce some
invariants on the position of nodes inside a validated docu-
ment.

int main (int argc, char **argv)

{

GdomeDOMImplementation *domimpl;

GdomeDocument *domdoc;

GdomeElement *rootel;

GdomeException exc;

domimpl = gdome_di_mkref();

domdoc = gdome_di_parseFile (domimpl, argv[1], &∃c);
rootel = gdome_doc_documentElement (domdoc, &∃c);

cleanSubTree ((GdomeNode *)rootel);

gdome_di_saveFile (domimpl, "out.xml", domdoc, &∃c);

gdome_di_freeDoc (domimpl, domdoc, &∃c);

return 0;

}

First of all, the Gdome2 user has to bootstrap the library
and load the XML data file in a GdomeDocument object.
Then, he recovers the reference to the root GdomeElement of
the document by means of the gdome_doc_documentElement

method.
At that point, he invokes the cleaning function clean-

SubTree and finally he saves the resulting document back to
the file system.

Let us now turn our attention to the cleaning function,
described below:

void cleanSubTree (GdomeNode *node)

{

GdomeNodeList *nl;

GdomeException exc;

GdomeNode *child;

long i, nllength;

nl = gdome_n_childNodes (node, &∃c);
if ((nllength = gdome_nl_length (nl, &∃c)) == 0)

return;

for (i = nllength - 1 ; i &s;= 0; i--) {

child = gdome_nl_item(nl, i, &∃c);

if (gdome_n_nodeType (child, &∃c) == GDOME_COMMENT_NODE

||

(gdome_n_nodeType (child, &∃c) == GDOME_TEXT_NODE

&&

isSpaceStr (gdome_t_data ((GdomeText *)child,

&∃c))))
gdome_n_removeChild (node, child, &∃c);

else if (gdome_n_hasChildNodes (child, &∃c))
cleanSubTree (child);

}

}

First of all, we retrieve a NodeList structure with the list
of the children of the current node. Next, we have to iterate
on each node, possibly removing it if it turns out to be a
comment or a discardable space node.

Now, we want to exploit the liveness property of the
NodeList structure where changes to the tree are automatically
reflected in the list. However, this is a problem if one is going
to access the list by means of a progressive index, because as
the nodes are removed the list becomes shorter and the set
of valid indexes smaller. For this reason, we develop the func-
tion as a loop where the index decreases at each iteration. In
this way, we always access the right node, whether or not the
previous one has been removed.

The remaining, important children are recursively vis-
ited as they are met.

The Gnome DOM Engine

Extreme Markup Languages 2001 49

DESIGN ISSUES
Object-Orientation

One of the first issues to be addressed when considering the
implementation of DOM in an imperative language like C
is the mapping of the object-oriented architecture of DOM.

Gdome2 objects are implemented in a straightforward
way: objects have fields classified into instance fields and class
fields. Instance fields are allocated for each instance of a given
class (where the “class” is the realization of a DOM interface),
and they are grouped in a standard C structure. Class fields
are fields shared by all the instances of a given interface. Each
Gdome2 object has one instance field which is a pointer to
a statically allocated structure containing its class fields.

A typical example of a class field which is present in all
Gdome2 objects is the virtual table, containing pointers to
the methods implemented by the class of the object itself.

The importance of virtual tables is twofold: a first,
straightforward reason is that it allows a mechanism equiva-
lent to inheritance of methods, thus favoring the reuse of code
and ultimately making easier the maintenance of the source
code. But, more important, virtual tables are needed in order
to have late-binding, which is a common feature of object-
oriented languages allowing to delay the choice of the
method to be called on an object until the run-time type of
the object is known.

Architecture

Although the DOM Architecture can be used for the creation
of new documents not residing in some external resource, a
DOM implementation is usually not a piece of stand-alone
software: in most cases, it is added as a separation layer be-
tween a XML parser and user applications.

The distinction between the parser and the DOM im-
plementation is not always so definite. For example, a DOM
implementation can provide its own parsing module, so that
the DOM layer appears as the lowest one from the application
point of view. Alternatively, the XML parser could only be
responsible to generate a proper sequence of SAX (Simple
API for XML) events, and then it is up to the DOM imple-
mentation to create the internal document representation.

As we will see, the approach used in Gdome2 is some-
how an hybrid of the two scenarios previously depicted. In
fact, Gdome2 is based on the XML C library for Gnome
(libxml24 for short) which is much more than a mere XML
parser. With respect to parsing, libxml2 exports three kinds
of interfaces:

• a SAX event-based interface;
• a Pull method, which parses a whole document and then

returns a corresponding document structure;
• a Push method, where the document is parsed on de-

mand, as the application requires for more chunks to be

4. http://xmlsoft.org

parsed. This method is conceived to be used, for exam-
ple, in interactive applications where it is not feasible to
block the whole process while parsing a large document.

In particular, the last two methods build a libxml2-de-
pendent tree representation of the document which largely
borrows from the DOM core specification, and this is a cru-
cial aspect of the whole Gdome2 implementation, as we will
see.

The DOM Tree

In the DOM view, documents have a logical structure which
is very much like a tree; to be more precise, which is like a
“forest” or “grove”, since we can work with several document
trees at the same time. The DOM specification is largely
organized around the Node interface, which is the basic node
that trees are made of and which defines the basic methods
for the traversal of the document (such as for retrieving the
parent of a node, its first child, the next sibling and so on).
More formally, the DOM tree is made of entities that imple-
ments the Node Interface.

Internal DOM Tree Representation in Gdome2
As we have seen, libxml2 has its own concept of document
tree. So, from one side libxml2 is an already working DOM-
like implementation which is relatively light-weight and fur-
ther justified by the fact that it allows document validation.
From the other side, it is definitely not a DOM implemen-
tation, for it does not export a full DOM interface and it is
somehow targeted to the libxml2 internal use of the docu-
ment.

Thus, Gdome2 acts like a wrapper for the libxml2 tree
structure, implementing in a uniform way the DOM inter-
faces and ultimately hiding any detail relevant to the libxml2
internals. A Gdome2 node is just a wrapper with a reference
to the actual libxml2 node. Moreover, as we will see, Gdome2
wrapping nodes are “cached” so that only one wrapper is pos-
sibly allocated for a given node of the tree, regardless the
actual number of live references from the user application to
that node.

This approach has the advantage to exploit most of the
libxml2 internal structure for the implementation of DOM,
with the minimum duplication of code and a relevant save
in terms of memory usage: Gdome2 node wrappers are just
used to store fields and to provide functionalities not directly
available by means of libxml2 nodes only.

Gdome2 implementation of the Node interface consists
of a set of functions providing:

• reading access for read-only node attributes;
• read/write access for modifiable node attributes by means

of a couple of get/set functions;
• the semantic associated to the corresponding method in

the DOM specification.

Paolo Casarini and Luca Padovani

50 Extreme Markup Languages 2001

In particular, the last possibility is either implemented by sim-
ply “forwarding” the method invocation to the corresponding
libxml2 function over the libxml2 node, if such function is
already provided by libxml2, or implementing it from scratch
in the case it is missing.

Tree Structure Differences at Gdome2 Layer
As we have already pointed out in the previous section, the
libxml2 tree structure is not always sufficient (nor adequate,
in some cases) to fully implement the DOM specification.

Every time the user application asks for the first time an
handle to a particular document node, Gdome2 creates a
wrapping structure with an internal reference to the corre-
sponding libxml2 node. Elements, attributes and, in general,
all the entities derived from Node share the same structure
as generic nodes: the inheritance mechanism implemented
in Gdome2 allows the sharing of common methods. At this
point Gdome2 returns an “opaque” pointer to a GdomeNode

structure thus preventing any potentially dangerous modifi-
cation to the internal fields used by Gdome2.

The internal structure for a node is the following:

typedef struct _Gdome_xml_Node Gdome_xml_Node;

struct _Gdome_xml_Node {

GdomeNode super;

int refcnt;

xmlNode *n;

GdomeAccessType accessType;

Gdome_xml_ListenerList *ll;

};

Gdome2 uses a reference counting mechanism to keep
track of the number of users (or live references) of a given
node: the structure is shared by all the users which asked for
the same DOM node, and the structure is eventually freed
as soon as the counter reaches 0.

The sharing of this structure is implemented in an effi-
cient way exploiting the _private field inside libxml2 nodes:
when a Gdome2 node is requested by the user, a first check
is made on the _private field of the corresponding libxml2
node. If this field is NULL, then the node is accessed for the
first time, Gdome2 allocates and initializes a new wrapping
structure and sets a pointer to it in the _private field. On the
other hand, if _private is a non-NULL pointer, then Gdome2
assumes that it is a previously allocated Gdome_xml_Node and
simply returns its value, after having incremented the refer-
ence counter accordingly.

However, there are two cases where libxml2 structures
are not suitable for this kind of handling:

DocumentType following the DOM specification, this
node is meant to provide the lists of entities and notations
that are declared both in the external and internal DTD
(Document Type Declaration) of the document. How-
ever, libxml2 builds different hash tables depending on
whether the entities or the notations come from the in-

ternal or external fragment of the DTD, for a total of 4
different hash tables. So, when a handle to a
DocumentType node is asked for, Gdome2 builds two new
hash tables, one for the entities and one for the notations,
resulting from the merging of the paired hash tables for
entities and notations.

Notation for historical reasons, in libxml2 this node
has a particular and too simple structure. So, to treat this
node uniformly with all the other node types (in partic-
ular for the implementation of the DocumentType inter-
face), Gdome2 allocates a further wrapper to the libxml2
Notation node, so that it looks like all the other nodes.

Node Collections

One of the most important interfaces of the DOM Core Spec-
ification is the NodeList interface, which is used to handle
ordered lists of Nodes such as the children of a Node, or the
elements returned by the getElementsByTagName method of
the Element interface. Similarly, there is also a Named-

NodeMap interface, used to handle unordered sets of nodes
referenced by their name attribute, such as the attributes of
an Element. One of their main characteristics is that they are
“live” structures, that is, changes to the underlying document
structure are automatically reflected in all relevant NodeList

and NamedNodeMap objects. For example, if a DOM user gets
a NodeList object containing the children of an Element, and
he subsequently adds more children to that element, then
the added children are silently added to the NodeList, without
further action requested from the user side. Of course,
changes to a node in the tree are reflected in all references
to that Node in NodeList and NamedNodeMap objects.

NodeList Implementation Details
The NodeList interface provides the abstraction of a live or-
dered collection of nodes.

A first way to implement the NodeList interface is to phys-
ically represent it as list of node handles. To make it live we
would have to create a list of active NodeLists associated to
the Document or to the DOMImplementation objects that own
them. Then, any function modifying in some way the tree
structure has to update accordingly all the lists where the
modified nodes appears. This implementation has the great
advantage to be an actual list, so that scanning and searching
can be performed quickly (in particular, with regard to the
getElementsByTagName method). However, the bookkeeping
required to maintain the lists is not feasible, especially if the
document is going to be modified often.

The alternative way, which is that implemented in
Gdome2, tries to reduce the memory occupation by using a
completely “lazy” structure. More specifically, when a
NodeList is requested, we return a reference to the following
structure:

The Gnome DOM Engine

Extreme Markup Languages 2001 51

Memory Occupation
Test XML Size Nodes Xerces Size Gdome2 Min. Size Gdome2 Max. Size

A 1 161320 15.6 14.5 19.4

B 2 307921 29.5 27.4 37

C 4 619556 59.2 55.1 74.4

D 8 1175477 112.2 104.5 141.2

typedef struct _Gdome_xml_NodeList Gdome_xml_NodeList;

struct _Gdome_xml_NodeList {

GdomeNodeList super;

int refcnt;

GdomeNode *root;

GdomeDOMString *tagName;

GdomeDOMString *tagURI;

GdomeAccessType accessType;

};

Among the interesting fields of this structure we have a
reference to a GdomeNode structure called root pointing to
the root of the subtree of concern (each NodeList is relative
to a particular subtree, for efficiency reasons. In the worst
case, root is the topmost document node, corresponding to
the whole tree). tagName is a reference to a GdomeDOMString

which is the local or qualified name to be matched; when
this field is non-NULL, the list includes any element with the
given name which is a descendant of the specified root ele-
ment. On the other hand, when the field is NULL, the list only
includes the children nodes of the root element. tagURI is a
reference to a GdomeDOMString representing the namespace
URI to be matched. As for the previous field, it can be NULL

for lists which contains nodes regardless the namespace.
Note in particular that no other structure aside

Gdome_xml_NodeList is allocated: when the user calls meth-
ods of the NodeList interface we simply traverse the DOM
tree starting from the root node, possibly applying the filter
represented by the tagName and tagURI, if specified. In a
sense, this implementation of NodeList is much like a live filter
on the DOM tree.

Unfortunately, it is relatively complex to find some effec-
tive optimizations for this structure, due to its “liveness” prop-
erty because, in general, access time is linear in the length of
the list. This might induce us to introduce some non-standard
interfaces for a more efficient retrieval of document nodes in
a near future.

However, note that every node lists whose root node is
read-only is defined once and for all at the moment of its
creation, so that effective optimizations can be done. In par-
ticular, access time can be reduced from linear to constant
in the case of an un-filtered node list.

NamedNodeMap Implementation Details
Objects implementing the NamedNodeMap interface are used
to represent collections of nodes that can be accessed by

name, namely attributes inside elements, entities and nota-
tions. NameNodeMaps objects are not maintained in any par-
ticular order, even though they can be accessed by a sequen-
tial index for an easy scanning. Like NodeList objects,
NamedNodeMaps are “live”.

The NamedNodeMap interface is implemented in
Gdome2 with the same philosophy of NodeList. When the
user asks for a NamedNodeMap, Gdome2 initializes a structure
which contains only the information to locate nodes belong-
ing to the NamedNodeMap requested.

The DOM specification requires that nodes contained
in a NamedNodeMap have to be all of the same type. Moreover
they can only be instances of the Attr, Entity or Notation in-
terfaces. The main problem is that libxml2 uses two different
structures to maintain these nodes: entities and notations are
stored in hash tables, while attributes are stored in double
linked lists. Gdome2 correctly handle these differences by
setting a flag inside the GdomeNameNodeMap structure, so
that the correct methods for searching are invoked.

GDOME2 VS. XERCES-C��

In this section we draw a comparison between Gdome2 and
Xerces [Xerces] with respect to performances and memory
occupation. Xerces is a XML parser available for both Java
and C++ programming languages. Here we choose the C++
version because we believe that it is more significant for a
comparison with our implementation: C++ is compiled di-
rectly into native code, and Xerces-C++, like Gdome2, uses
reference counting, while Xerces-Java relies on the garbage
collector of the Java virtual machine.

For the benchmarks we used 4 different well-formed
XML files generated by a random procedure. In the following
table we summarize memory occupation results for Xerces
and Gdome2. All the sizes are in Mb (Mega-bytes).

For Gdome2 we provide two values for each test, because
the actual memory occupation varies depending on the num-
ber of live references to DOM nodes. Indeed, as we have ex-
plained in a previous section, Gdome2 wrapping structures
are allocated only if there is at least one live reference to
them. The minimum size corresponds to the size of the
libxml2 tree only (no live references), while the maximum
size corresponds to the situation where each node in the tree
is referenced, so that each node has a wrapping structure
allocated.

Thus, the real memory occupation for Gdome2 some-

Paolo Casarini and Luca Padovani

52 Extreme Markup Languages 2001

how depends on the kind of application using the library. For
example, if the application is just making a traversal of the
tree looking for a particular node or parsing a configuration
file, then the actual occupation will be the minimum size
augmented by some amount proportional to the maximum
depth of the tree.

The extra space required by Gdome2 is justified by sev-
eral reasons: first of all, there is a sensible waste of memory
due to the memory allocation policy. In particular, for each
Gdome2 wrapper we have estimated the waste amount to
nearly 8 bytes. This waste can be reduced adopting a more
clever allocation strategy, for example allocating several wrap-
pers at a time. Secondly, the Gdome2 architecture leads to

an intrinsic overhead due to the separation of the tree built
by libxml2 and the wrapping nodes: libxml2 nodes and
Gdome2 wrappers are linked by a couple of pointers, result-
ing in 8 extra bytes in comparison with Xerces architecture.
Finally, we realize that some information encoded in
Gdome2 wrappers can be stored in a more efficient way. For
example, the accessType field is only used to prevent write
access to read-only nodes. Thus, this information could be
encoded as a single bit in some other field rather than a whole
word on its own.

In the following table we summarize parse and visit times
for Xerces and Gdome2 for the same XML files. All times are
in seconds:

Performances
Test Xerces Parse libxml2 Parse Xerces Visit Gdome2 Visit

A 3.8 0.9 1.8 0.8

B 7.2 1.6 3.5 1.5

C 14.5 3.3 7.1 3

D 32.3 9.2 117.7 6.8

The table shows that the libxml2 parser is much faster
than Xerces’. Moreover, Gdome2 is more than twice as faster
as Xerces to complete a full visit of the DOM tree. The visit
time for Xerces in test D is not meaningful, because it has
been affected by memory swapping due to the tree size which
was almost as large as the whole main memory available
(128Mb). Incidentally, this also shows that memory occupa-
tion can be a critical issue and that the layered architecture
of Gdome2 can benefit from it (as in this case) or can be a
serious problem.

A possible rationale for the better performances of
Gdome2 is that Xerces uses so called smart pointers in order
to facilitate memory management and to avoid the program-
mer being aware of reference counting. The point is that
smart pointers are a live objects: each time a node is returned
as the result of a method in some Xerces class, a fresh smart
pointer is allocated (or re-initialized). By contrast, in Gdome2
just a pointer to a node is returned, but the programmer is
required to handle reference counting explicitly. Nonethe-
less, we consider this comparison fair, despite the use of smart
pointers in Xerces, because, in Gdome2, visit time also in-
cludes memory allocation and initialization of the wrapping
structures.

CONCLUSIONS AND FURTHER DEVELOPMENTS
In this paper we presented some aspects of the recent work
done in Gdome2, the Gnome DOM Engine. We described
some issues regarding the C interface, such as naming and
parameters conventions, non-standard features of the library
and the object model adopted in Gdome2. We also described
some of the major implementation issues of the library, trying
to give the reader some flavor of the overall architecture. Fi-

nally, we drew a comparison of performances and memory
occupation between Gdome2 and Xerces (for C++) showing
that Gdome2 is much faster, thought in some cases it has a
larger memory occupation due to its layered architecture.

A lot of work has still to be done. First of all, we plan to
implement the Events module, which is going to become a
crucial component for editing and authoring purposes. Then,
we expect to receive a large amount of feedback from devel-
opers who decide to design their applications around XML
and the Document Object Model. This will give us a lot of
hints for possible optimizations and further developments of
the library.

As a concluding remark, it is obvious that the diffusion
of XML and its final success strongly depend on the avail-
ability of tools for its fruitful exploitation. Gdome2 is aimed
to be, after all, a contribution in this direction.

We want to thank Andrea Asperti for many helpful dis-
cussions. We also thank the peer reviewers which provided
us with some important feedback about the structure of the
paper.

BIBLIOGRAPHY

[HUN00] D. Hunter et al., “Beginning XML”, Wrox Press Inc.,
June 2000.

[XML00] “Extensible Markup Language (XML) 1.0”, Second Edi-
tion, W3C Recommendation, 6 October 2000, http://
www.w3.org/TR/2000/REC-xml-20001006

[UTF-8] F. Yergeau, “UTF-8, a transformation format of ISO
10646”, IETF (Internet Engineering Task Force), RFC 2279,
http://www.ietf.org/rfc/rfc2279.txt

The Gnome DOM Engine

Extreme Markup Languages 2001 53

[Unicode] The Unicode Consortium, “The Unicode Standard”,
version 3.0, Frebruary 2000, http://www.unicode.org/unicode/
standard/versions/Unicode3.0.html

[LEVDOM99] R. Levien, “Gnome World DOMination”, 14 April
1999,http://www.levien.com/gnome/domination.html

[DOM] “Document Object Model (DOM) Level 2 Specification”.
Version 1.0, W3C Recommendation, 13 November 2000. http:/
/www.w3.org/TR/2000/CR-DOM-Level-Core/ http://
www.w3.org/TR/DOM-Level-2-Events/ http://www.w3.org/TR/
DOM-Level-2-Traversal-Range/

[C] B.W. Kernighan, D.M. Ritchie, “The C Programming Lan-
guage”, Second Edition, Prentice Hall, June 1988.

[Java] K. Arnold, J. Gosling, D. Holmes, “The Java Programming
Language”, Third Edition, Addison-Wesley, June 15, 2000.

[CPP] B. Stroustrup, “The C++ Programming Language”, Special
Edition, Addison-Wesley, February 15, 2000.

[encoding] D. Veillard, “Libxml Internationalization Support”,
http://xmlsoft.org/encoding.html

[LEVTXT99] R. Levien, “Gnome-Text API Documentation”, July
10, 1999,http://www.levien.com/gnome/gnome-text.html

[LEVPA99] R. Levien, “Pango Proposal”, rev 0.1, July 28, 1999,
http://www.levien.com/gnome/pango-0.1.html

[Names99] “Namespaces in XML”, W3C Recommendation, Jan-
uary 14, 1999, http://www.w3.org/TR/1999/REC-xml-names-
19990114/

[Xerces] “Xerces-C++ Parser”, Version 1.4.0, http://xml.apache.org

BIOGRAPHY
Paolo Casarini was born in Italy in 1974. He is a graduating
student in Computer Science at the University of Bologna.
His master thesis is about a DOM Level 2 implementation
for Gnome, compliant to the Core and Events modules. He
is currently the maintainer of the Gdome2 project. His main
interests are focused to the optimization of standard ways for
the management of structured data.

Contributions to the Project: He is the supervisor and
maintainer of the Gdome2 Gnome module HELM, as well
as its main developer.

Luca Padovani was born in Italy in 1974. He won a Ph.D.
fellowship in Computer Science in 1999. He worked on de-
sign and implementation of distributed concurrent languages
with mobile agents. His current interests cover Web Tech-
nologies, Web Publishing, concurrency models and func-
tional languages.

Contributions to the Project: He contributed to the de-
sign and development of the Gdome2 module with Paolo
Casarini. He has designed and implemented the Gtk-widget
for the rendering of MathML presentation documents which
is going to use Gdome2 as its underlying DOM framework.

