
17

XML, Stylesheets and the Re-mathematization of Formal
Content

Andrea Asperti
Department of Computer Science, University of
Bologna
Via di Mura Anteo Zamboni 7
40127
Bologna, Italy
email asperti@cs.unibo.it
web http://www.cs.unibo.it/~asperti

Luca Padovani
Department of Computer Science, University of
Bologna
Via di Mura Anteo Zamboni 7
40127
Bologna, Italy
email luca.padovani@cs.unibo.it
web http://www.cs.unibo.it/~lpadovan

Claudio Sacerdoti Coen
Department of Computer Science, University of
Bologna
Via di Mura Anteo Zamboni 7
40127
Bologna, Italy
email sacerdot@cs.unibo.it
web http://www.cs.unibo.it/~sacerdot

Irene Schena
Department of Computer Science, University of
Bologna
Via di Mura Anteo Zamboni 7
40127
Bologna, Italy
email schena@cs.unibo.it
web http://www.cs.unibo.it/~schena

ABSTRACT
An important part of the descriptive power of mathematics derives from
its ability to represent formal concepts in a highly evolved, two-
dimensional system of symbolic notations. Tools for the mechanisation of
mathematics and the automation of formal reasoning must eventually
face the problem of re-mathematization of the logical, symbolic content
of the information, especially in view of their integration with the World
Wide Web. In a different work [APSS00c], we already discussed the
pivotal role that XML (eXtensible Markup Language) technology [XML
] is likely to play in such an integration. In this paper, we focus on the
problem of (Web) publishing, advocating the use of XSL (eXtensible
Stylesheet Language) Transformations, in conjunction with MathML
(Mathematical Markup Language), as a standard, application
independent and modular way for associating notation to formal
mathematical content.

KEYWORDS
XML; MathML; XSLT; Formal Mathematics; Web Publishing; Proof
Rendering; Natural Language

Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena

18 Extreme Markup Languages 2001

1 INTRODUCTION

In a different paper [APSS00c] we advocated the pivotal role
of XML-technology, recently introduced by the W3C (World
Wide Web Consortium), for the development of large, dis-
tributed repositories of formal mathematical knowledge. The
eXtensible Markup Language [XML], which is rapidly im-
posing as the main tool for representation, manipulation, and
exchange of structured information in the networked age,
provides a simple bridge between tools for automation of for-
mal reasoning and the Web, and naturally leads to the design
of a new generation of Logical Environments along the guide-
lines of the new Information Society, and its emphasis on
content. The broad goal of our project (http://
www.cs.unibo.it/helm) goes far beyond the trivial suggestion
to adopt XML as a neutral specification language for the
“compiled” versions of the libraries, or even the observation
that in this way we could take advantage of a lot of function-
alities on XML-documents already offered by standard com-
mercial tools. First of all, having a common, application in-
dependent, meta-language for mathematical proofs, similar
software tools could be applied to different logical dialects,
regardless of their concrete nature. This would be especially
relevant for all those operations like rendering, browsing,
searching, and retrieving (just to mention a few of them) that
are largely independent from the specific logical system.
Moreover, if having a common representation layer is not the
ultimate solution to all interoperability problems between dif-
ferent applications, it is however a first and essential step in
this direction. Finally, this “standardisation” process naturally
leads to a substantial simplification and re-organisation of the
current, “monolithic” architecture of logical frameworks. All
the many different and often loosely connected functionali-
ties of these complex programs (proof checking, proof editing,
proof displaying, search and consulting, program extraction,
and so on) could be clearly split in more or less autonomous
tasks, possibly (and hopefully!) developed by different teams,
in totally different languages. This is the new, “content-cen-
tric” architectural design of future systems.

An essential component of XML-technology is XSLT
(Extensible Stylesheet Language, Transformation part)
[XSLT] which recently became a W3C Recommendation.
XSLT is a simple rule-based language for transforming XML
documents into other XML documents. Although the ex-
pressive power of XSLT is remarkable, it was not intended as
a completely general-purpose XML transformation language
but, primarily, as a mean to specify the styling of an XML
document by transforming the specific XML-dialect of the
input document into a formatting language suitable for ren-
dering issues (HTML (HyperText Markup Language), For-
matting Objects, or whatever). This is also the use of XSLT
intended in this paper; in particular, we advocate the use of
stylesheets as a standard mechanism for associating notation
to content in mathematical documents.

This raises the question of the target formatting language

for mathematics. Once in the realm of XML, a natural choice
is provided by MathML.1 MathML [MathML] is an instance
of XML which has been developed under the aegis of W3C
with the goal to enable mathematics to be served, received,
and processed on the Web, just as HTML has enabled this
functionality for text. MathML is actually composed by two
parts: presentation markup (which should become, roughly,
the math-mode of HTML), and content markup, whose aim
should be to capture the “logical structure” of the informa-
tion. MathML also comprises some mechanisms for associ-
ating content with presentation. While MathML-presentation
is well on its way and likely to be rapidly adopted by several
browsers, the actual role of MathML-content is more ques-
tionable, especially for people aware of (and aquainted with)
the multi-lingual environment of the foundations of mathe-
matics. Still, MathML-content has been conceived as an ex-
tensible (and thus, potentially, infinitary) language; this fact,
and its flexible nature, make it very suitable to act as an in-
teresting intermediate semi-formal language between the spe-
cific (logic-dependent) low level representation of the infor-
mation and its presentation in some editing format. The fact
of passing through an intermediate representation is going to
improve the modularity of the overall architecture: many spe-
cific logical dialects can be mapped into the same interme-
diate language (or into suitable extensions of it), and many
transformations to specific editing formats can be defined for
the single intermediate language (just simple extensions of
the transformations would be required, in case of extensions
of the intermediate representation).

2 PROOFS AS EXPRESSIONS
Accordingly to the Semantic Web, we are interested not only
in encoding mathematical documents, and proofs in partic-
ular, in a machine readable way, but also in a machine un-
derstandable way. This means, for example, that it must be
easy to write tools to inspect proofs, to automatically verify
their correctness and to data-mine them. This has always been
the subject of study of Proof Theory and Formal Logic, whose
concrete products are Proof Assistants.

In almost every Proof Assistant, a formal proof is encoded
in a very peculiar way, which is an expression in a particular
calculus. Even a short introduction to the subject would re-
quire a whole text-book; the best reference for beginners is
probably [GLT89]. Thus, in the rest of this section we will
only show an example to allow the reader to grasp the idea.

Consider the following tautology in propositional logic:
A4B⇒(B⇒A)⇒A. A proof in natural language is "Consider
A4B. If A is true the proof is finished. Otherwise B is true;
hence, using the hypotheses B⇒A, we can conclude A.
QED"

Accordingly to Formal Logic, we can think of any proof

1. We joined the MathML Working Group of W3C in October ’99.

XML, Stylesheets and the Re-mathematization of Formal Content

Extreme Markup Languages 2001 19

Figure 1 Example of natural deduction tree

as a well-formed tree; for example, the previous proof is de-
scribed in natural deduction style in figure 1. Every node of
the tree corresponds to a logical rule, whose name is shown
on the right. The root of the tree is the conclusion of the
theorem; the un-discharged leaves are the hypothesis. A dis-
charged leaf is a leaf between square brackets; every rule ap-
plication has associated to it a list of the hypothesis that it
discharges. The theorem is correct if every node is well-
formed, i.e. it has the right number of children and every
child is a proof of the expected proposition with respect to
the logical rule. To define a logic, it is enough to specify the
set of all the logical rules.

Because working with trees and discharging of the hy-
pothesis is rather cumbersome, logicians have found the way
of sequentialising them as expressions. The idea consists in
developing a typed k-calculus (the core of every functional
language) in which every well formed type corresponds to a
statement and every well-typed term to a proof. Each logical
rule becomes an operator of the calculus of the appropriate
type; binding naturally replaces discharging and proof-check-
ing amounts to type-check the corresponding expression.

The above proof, for example, could be sequentialised
as (or_elim H1 kx:A.x ky:B.(modus_ponens y H2)) where H1 is
the hypothesis of type A, H2 is the hypothesis of type B⇒A,
or_elim has type A4B⇒(A⇒C)⇒(B⇒C)⇒C for each A,B
and C and modus_ponens has type A⇒(A⇒B)⇒B for each
A and B; kx:T.M is the usual k-notation for the function f(x:T)
= M. Obviously, once we have the term corresponding to a
proof, it is a trivial task to encode its abstract syntax tree into
XML.

3 XML

The potential relevance of XML for the development of large,
distributed repositories of formal mathematical knowledge
has been already discussed in the introduction. In order to
test the actual feasibility of the idea, our first step has been to
export in XML the standard library of a widely used and well-
known proof assistant: Coq [Coq]. Exporting the library was
not as easy as one could naively expect. Not only you must
wisely choose what information is worth exporting, but you
must also fight against the several internal intricacies of the
application; in particular, some relevant information is not
directly available, requiring a tight integration with the sys-

tem.2 On the other side, once you have exported all relevant
information, you may just forget the underlying application,
merely working on XML-documents.

The standard library of Coq generated about 5200 XML
files, taking about 120 Mb of disk space (24 Mb after com-
pression). Each file is rather particular, all the information
being encoded in markup elements, without any PCDATA
content; this is a consequence of the really fine-grained for-
mal encoding, reflected into the DTD. Moreover, the DOM
(Document Object Model) trees have typically a small
branching factor, but a conspicuous depth: it is not unusual
to have nesting degrees of several hundred units.

Below is an example of a small fragment of one of this
documents, representing the mathematical expression (n >
0) 4 (0 = n).

<APPLY>

<MUTIND notype="0" uri="cic:/coq/INIT/Logic/Disjunction/

or.ind"/>

<APPLY>

<CONST uri="cic:/coq/INIT/Peano/gt.con"/>

<REL binder="n" value="1"/>

<MUTCONSTRUCT noconstr="1" notype="0" uri="cic:/coq/INIT/

Datatypes/nat.ind"/>

</APPLY>

<APPLY>

<MUTIND notype="0" uri="cic:/coq/INIT/Logic/Equality/eq.ind"/

>

<MUTIND notype="0" uri="cic:/coq/INIT/Datatypes/nat.ind"/>

<MUTCONSTRUCT noconstr="1" notype="0" uri="cic:/coq/INIT/

Datatypes/nat.ind"/>

<REL binder="n" value="1"/>

</APPLY>

</APPLY>

The reading of the previous fragment of code should be
quite evident, at least for people acquainted with Coq. The
expression is the application of “or” to a pair of arguments.

2. A typical problem is the translation from internal names to URI (Uniform
Resource Identifier), that typically require extra path-information not directly
encoded inside the terms; another example, in logical environments encod-
ing proofs with k-terms according to the Curry-Howard analogy, is the ab-
sence of type information for the inner nodes of the terms, which is essential
for rendering purposes.

Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena

20 Extreme Markup Languages 2001

“or” is the first (and, in this case, unique) type defined in the
mutual inductive definition contained in the file whose URI
is cic:/coq/INIT/Logic/Disjunction/or.ind. The first argument is
an application of the constant “gt” (defined in cic:/coq/INIT/

Peano/gt.con) to n and to 0 (0 is the first constructor of the
datatype of natural numbers, defined in cic:/coq/INIT/Data-

types/nat.ind). The second argument is the application of
“eq” (Leibniz’ equality, defined in cic:/coq/INIT/Logic/Equal-

ity/eq.ind) to the type of natural numbers, 0 and n.
Note that the information encoded in markup exactly

reflects all the internal information of Coq; in particular, it
reflects all the relevant information, and not just the infor-
mation required for rendering purposes. In order to prove this
assertion, we entirely re-wrote the Coq type-checker to make
it work on XML-documents. Once the information is ex-
tracted and exported in XML, it can be used as a more con-
venient format for exchanging pieces of the library on the
Web.

In the sequel, we shall just point out the relevance of our
methodology from the point of view of Web publishing, and
the re-mathematization of formal content. To this aim, we
must first introduce MathML.

4 MATHML
MathML [MathML] is an instance of XML for describing
mathematical expressions capturing both their intended log-
ical content and formatting. The following short introduction
largely borrows from the Recommendation, version 2.0.

The MathML markup elements fall roughly into two
categories: presentation elements and content elements.

4.1 Presentation Elements

The presentation markup of MathML provides a quite typical
editing environment for mathematical expressions, with no
special or distinctive features. The main interest of the lan-
guage is that it has been recommended by W3C as a standard
for rendering mathematics on the web and it is likely to be
adopted and supported by most browsers. MathML presen-
tation markup consists of about 30 elements which accept
over 50 attributes. Most of the elements correspond to layout
schemata, which contain other presentation elements. Each
layout schema corresponds to a two-dimensional notational
device, such as a superscript or subscript, fraction or table. In
addition, there are the presentation token elements mi, mn

and mo that respectively stands for identifiers, numerical con-
stants and operators, as well as several other less commonly
used token elements. The remaining few presentation ele-
ments are empty elements, and are used mostly in connection
with alignment.

The layout schemata fall into several classes. One group
of elements is concerned with scripts, and contains elements
such as msub, munder, and multiscripts. Another group fo-
cuses on more general layout and includes mrow (used for

grouping subexpressions), mstyle, and mfrac. A third group
deals with tables.

For instance, the expression (n > 0) 4 (0 = n) would be
written as follows, whose reading should be clear:

<mrow>

<mrow>

<mi>n</mi>

<mo>></mo>

<mi>O<mi>

</m:mrow>

<mo>

<mchar name="vee"/>

<mo>

<mrow>

<mi>O<mi>

<mo>=<mo>

<mi>n</mi>

</mrow>

</mrow>

Note that presentation markup (as well as content
markup) is not intended to be edited by hand, but by auto-
matic means or suitable editing tools.

4.2 Content Elements

Content markup consists of about 100 elements accepting a
dozen attributes. The majority of these elements are empty
elements corresponding to a wide variety of common math-
ematical operators, relations and functions, such as partialdiff
(partial differentiation), leq (less or equal) and tan (tangent).3

Others elements, such as matrix and set, are used to encode
various mathematical data types, and a third, important cate-
gory of content elements such as apply are used to build math-
ematical expressions and also to construct new mathematical
objects from others.

The apply element is the most important content ele-
ment, since it provides the only mechanism to build, by com-
position, complex mathematical expressions. The first child
of apply must be an empty element denoting the operator to
be applied, with the other child elements as arguments. The
operator must be in the range of pre-defined empty elements
of MathML, or it can be a new user-defined operator, called
a csymbol. For instance, the expression (n > 0) 4 (0 = n) is
encoded as follows:

<apply>

<or/>

3. MathML claims that the base set of content elements should be adequate
for simple coding of most of the formulas used from kindergarten to the end
of high school and the first two years of college, that is up to A-Level or
Baccalaureate level in Europe. Subject areas covered to some extent in
MathML are: arithmetic, algebra, logic and relations, calculus and vector
calculus, set theory, sequences and series, elementary classical functions,
statistics, linear algebra.

XML, Stylesheets and the Re-mathematization of Formal Content

Extreme Markup Languages 2001 21

<apply>

<gt/>

<ci>n</ci>

<ci>O</ci>

</apply>

<apply>

<eq/>

<ci>n</ci>

<ci>O</ci>

</apply>

</apply>

Note, by the way, the similarity between this represen-
tation and that in Section 3. The similarity can be enforced
setting the definitionURL attribute of a MathML content ele-
ment to override the MathML default semantics of the ele-
ment with its formal one in a specific logical system. In the
example above we can set the definitionURL attribute of the
or operator to the same value (cic:/coq/INIT/LOGIC/Disjunc-
tion/or.ind) of the uri attribute of the corresponding low level
logical representation.

Each node in the low level, formal representation could,
in the general case, be mapped to the root of a subtree in the
MathML representation. Hence, in order to use MathML as
an intermediate language, it is also necessary to preserve a
link from the root of each subtree to the possibly correspond-
ing low level element; in this way, any interaction with the
MathML markup could be reflected onto the formal docu-
ment.

4.3 Mixing Content and Presentation

The third category of elements is meant to supply mecha-
nisms for mixing presentation and content markup by em-
bedding one into the other, or by establishing bindings via so
called “semantic mappings”. One common use for the se-

mantics element is to bind a piece of content markup to some
presentation markup as a semantic annotation. In this way,
an author can specify a non-standard notation to be used
when displaying a particular content expression.

The MathML specification insists to keep both content
and presentation markup into a single document. Although
it is clear that both aspects are tightly related in mathematics,
there is no major evidence why this relation should eventually
imply a physical dependency inside a single document. In
one direction, we can imagine to define the relation from
content to presentation by means of stylesheets (see next sec-
tion), and conversely preserve the relation from presentation
to content by means of XLinks [XLink], [XPath], [XPointer
], that is a solution (almost) compatible with the current spec-
ification.

5 XSL TRANSFORMATIONS
As already mentioned in the introduction, we advocate the
use of stylesheets as a standard mechanism associating nota-

tion to content for mathematical documents. The choice of
XSLT is naturally motivated by the fact that XSLT has been
specifically designed to generate the styling of XML docu-
ments. Moreover, a strong proviso of our project is the ex-
ploitation of only standard XML technologies to improve re-
usability and integration of software components.

However, the impact of this choice from the points of
view of complexity, code readability and maintainability was
not evident a priori and it actually revealed quite cumber-
some (we believe we have really pushed XSLT to its extreme
possibilities). We will discuss this issues in section 7.1

At the time we started our project, there existed already
some efforts to apply XSLT to generate MathML presentation
markup from MathML content markup. We have taken ad-
vantage of these works, embedding a stylesheet defined by
Igor Rodionov, of the Computer Science Department of the
University of Western Ontario, London, Canada. Here is a
fragment of it (the code has been slightly simplified, for the
sake of clarity).

<xsl:template match = "m:apply[m:or[1]]">

<xsl:param name="IN_PREC" select="$NO_PREC"/>

<xsl:choose>

<xsl:when test="$IN_PREC > $OR_PREC">

<m:mfenced separators="">

<xsl:apply-templates select="." mode="or"/>

</m:mfenced>

</xsl:when>

<xsl:otherwise>

<m:mrow>

<xsl:apply-templates select="." mode="or"/>

</m:mrow>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match = "m:apply[m:or[1]]" mode="or">

<xsl:apply-templates select="*[2]" mode = "semantics">

<xsl:with-param name="IN_PREC" select="$OR_PREC"/>

</xsl:apply-templates>

<xsl:for-each select = "*[position()>2]">

<m:mo> <m:mchar name="vee"/> </m:mo>

<xsl:apply-templates select="." mode = "semantics">

<xsl:with-param name="IN_PREC" select="$OR_PREC"/>

</xsl:apply-templates>

</xsl:for-each>

</xsl:template>

When extending MathML content by means of user-de-
fined csymbols, we have just to extend the previous stylesheet
to cover the new particular cases (and XSLT has a clean in-
clusion mechanism to deal with this kind of extensions).

The transformation from MathML-content to MathML-
presentation requires less than 2000 lines of XSLT. The ex-
tension to new, Coq-oriented csymbols, requires 1400 addi-

Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena

22 Extreme Markup Languages 2001

tional lines. We also defined a bunch of stylesheets generating
HTML from MathML-content (about 1500 lines).

5.1 From the Low-Level Logical Specification to
MathML Content

Of course, we can use stylesheets to pass from the low-level
formal representation of the information (in a specific logical
dialect) to MathML content. By composition, this also im-
plicitly defines an intended presentation for it.

When translating a specific logical dialect (like that of
Coq) into MathML content, it is very likely that almost any
specific construct of the dialect will become a new csymbol.
Typically, MathML content starts to show its potentiality in
the encoding of defined entities.

For instance, the gt (greater than) relation is not a prim-
itive notion in Coq: actually, it is a suitable inductive defi-
nition. However, when we pass from Coq to MathML there
is no point to preserve this information, if not as a pointer to
its actual definition. So, the application of Coq-gt constant to
its pair of arguments can be directly transformed into an ap-
plication of MathML-gt element to (the result of the trans-
formation on) its arguments, automatically recovering the in-
tended presentation.

The following templates captures this idea:

<xsl:template match="APPLY[CONST[attribute::uri='cic:/coq/INIT/

Peano/gt.con']

and (count(child::*) = 3)]" >

<m:apply>

<m:gt definitionURL="{CONST/@uri}"/>

<xsl:apply-templates select="*[2]"/>

<xsl:apply-templates select="*[3]"/>

</m:apply>

</xsl:template>

In a similar way, content (and notation) can be associated
to all user-defined notions. In case the notion is not in the
primitive set of MathML-content, it is enough to create a new
csymbol, and extend the presentation stylesheet with the in-
tended presentation.

The general idea is that a bunch of “basic” stylesheets
should be available to cover standard parts of the library, while
each new contributor should also be responsible to define its
own stylesheet to fix its own personal notation (or to override
an existent one). This is made possible by the machinery of
XSLT: import and include priority policies allow to specify
different notational precedences by combining user defined
stylesheets. Unfortunately, this mechanism is not dynamic,
forcing a re-compilation of the stylesheets every time the tree
of combined stylesheets changes.

The development of stylesheets from the low-level XML
representation into MathML-content is still under develop-
ments. At present we just cover the main logical connectives,

and the basic notation for number theory, set-theory and reals
(for a total of about 1500 lines of XSLT).

6 BEYOND EXPRESSIONS
MathML is only concerned with mathematical expressions.
So, we must also face the problem to deal with different math-
ematical entities, like proofs, definitions, lemmas, theorems,
hypotheses and their scope.

Proofs are peculiar. On one side we can consider them
as a particular category of mathematical expressions (this is
the essence of proof theory), and they can be actually en-
coded into MathML-content with no much effort. On the
other side, simple notational or pretty-printing mechanisms
do not help that much in improving the reading of complex
formal derivations. Two ways seem to be possible, here:

• define complex stylesheets attempting some kind of au-
tomatic translation of formal proofs into natural lan-
guage, along the lines of systems like the Natural module
of Coq [CK95], [Cos00], [Coq]. Again, for obvious
portability reasons, it would be much more interesting to
have these transformations expressed as a stylesheet than
as a Coq module.

• associate explicit annotations in natural language to the
low level structured representation of the information. In
this case, the stylesheet is merely responsible to compose
the various pieces of annotation into a single statement.

We are pursuing both approaches in parallel. We just spend
a few words on the first, here, since it is more closely related
to the topic of this paper.

The general idea is that we should heavily work on the
structure of the proof, before attempting its translation. There
are two main operations to be done:

1. recognise the application of usual logical principles (not
primitive in the system!), such as an introduction or an
elimination of a conjunction, say, or the use of an in-
duction schema. All these logical constructions typically
require a specific presentation (and content description).

2. Change the structure of the proof, looking for “sub-
proofs” which must be brought to the surface: a k-term
encodes a “bottom-up” description of the proof, from the
conclusion to the premises; however, we would expect
to have a “top-down” presentation, from the premises to
the goal.

An important and, apparently, original notion that is
emerging from our work on this topic is that of “logical
thread”. A logical thread is a sequence of “linear” logical steps
where each one just depends from the result of the previous
one. Similarly, we must be able to distinguish between “ma-
jor” and “minor” premises. For instance consider the appli-
cation of a rewriting rule transforming a proof of P(t1) in a
proof of P(t2). This just depends from the proof of P(t1) (major

XML, Stylesheets and the Re-mathematization of Formal Content

Extreme Markup Languages 2001 23

premise) and a proof of t1 = t2 (minor premise, typically pre-
sented aside). In our terminology, we say that rewriting is a
pseudo-linear logical operation, that is a logical rule with a
single major premise and one (or more) minor premises.

In figure 2 you may find an example of a simple proof
borrowed from the standard library of Coq after the applica-
tion of these proof transformations (and notational style-
sheets). The Postscript was automatically generated from
MathML presentation, using one of the features of our
GtkMathView widget (http://www.cs.unibo.it/helm/mml-

widget). Note that, at MathML level, most of the symbols in
Figure 2, and all constant names are hyperlinks to the cor-
responding definitions (so, using a browser aware of XLinks—
such as the Gtk-widget—you may directly jump from an oc-
currence of a name/symbol to its actual definition).

The textual part is deliberately kept to a bare minimum,
especially in this prototyping phase. For instance it would be
very simple to change a kx:T into a more appealing sentence
in natural language such as “assume x of type T”, or “let x be
a generic object of type T”, but these are marginal details. Of
course, many other improvements can still be done, but the
example should already give a gist of the power of our tech-
niques.

As a comparative example, we also include the Coq term
encoding this proof.

Finally, let us remark that we are not responsible for the
proof, that could be easily improved. As a matter of fact, the
emphasis devoted in recent times to tactics (provability), and
the substantial impossibility to read the proof-object resulting
from a sequence of tactics have naturally lead to generate
huge libraries of “bad” proofs (you have much worse exam-
ples than the one above, in Coq standard library). Our tool,
providing a way to read proof objects in a much more natural
way, should help both in improving the quality of proofs, and
in improving the actual implementation of tactics.

6.1 The Document Structure

Definitions, theorems and other mathematical notions even-
tually require a further level, distinct from MathML (let us
call it the Document level). The interesting point is that this
level (as well as a further level of metadata), can probably be
entirely standardised, being largely independent from the spe-
cific foundational dialect. Our work in this direction is still
preliminary; an interesting proposal addressing these issues is
provided by OMDoc (Open Math Document) [OMDoc].

7 THE GLOBAL PICTURE
Figure 4 summarises the global architecture of the transfor-
mation process described in the previous sections.

Let us stress again that passing through an intermediate
representation like MathML content is particularly important
for the modularity of the overall architecture: many specific
logical dialects can be mapped into the same intermediate
language (or into suitable extensions of it), and many trans-

formations to specific editing formats can be defined for the
single intermediate language. Just simple extensions of the
transformations would be required, in case of extensions of
the intermediate representation.

7.1 Problems and Solutions Analysis

As a whole, all the developed stylesheets amount to about
9000 lines of XSLT. Rendering times are now acceptable, in
the order of a few seconds for medium-sized input files.
Achieving these performances has required many deep re-
designs of the stylesheet architecture and accurate optimisa-
tions of the code (the original mean rendering time was in
the order of some minutes!). The most influent have been:

1. The introduction of unique identifiers for each node
in the source documents. XPath expressions to identify
a node have in the general case a length linear in the
node depth; hence, due to the conspicuous nesting depth
of the source DOM trees, their computational and spatial
complexity were unmanageable. For this reason, we have
added unique identifiers to each node of the source XML
documents to simplify XPath expressions, that are all triv-
ial.

2. Using variables to hold external document fragments.
A quite astonishing performance improvement derived
by splitting input documents, applying the stylesheet only
on the main fragment and loading the others as node-
sets into XSLT variables.

This is only one representative of a large set of little
modifications on the stylesheets that lead to unexpected
performance changes. Another example is the usage of
XSLT key: for our set of stylesheets, substituting keys with
an explicit linear search on a flat tree unexpectedly was
more performing than Xalan key implementation.

The above ones seem to be idiosyncrasies of the im-
plementation of the particular XSLT engine we are us-
ing; generally speaking, though, the great sensibility of
the performance to even little changes in the stylesheets
is rather annoying.

Other critical issues are stylesheets readability and main-
tainability. To keep the complexity manageable and improve
scalability, we are successfully trying the following solutions:

1. Replacing of the single application of a complex style-
sheet with several simple stylesheet applications. The
principal source of complexity for stylesheets is the exis-
tence of multiple templates with the same matching pat-
tern to perform different tasks; at run time, the activated
template is chosen depending on the specified XSLT

mode and precedences. So, understanding the run-time
behaviour of a stylesheet become difficult.

To avoid the previous situation and reduce the high
number of different modes or precedence levels, we can
split the single stylesheet into as many ones as the num-

Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena

24 Extreme Markup Languages 2001

DEFINITION Rgt_Ropp() OF TYPE
∀ r 1 : R. ∀ r 2 : R.

(
r 1 > r 2 →−r 1 < −r 2

)

AS
λ r 1 : R
. λ r 2 : R
. λ H : r 1 > r 2

.(h 1)
(
Rplus_ne −r 1

)

we proved −r 1 + 0 = −r 1 ∧ 0− r 1 = −r 1

In particular, we have
(a) −r 1 + 0 = −r 1
(b) 0− r 1 = −r 1(
Rplus_ne −r 2

)

we proved −r 2 + 0 = −r 2 ∧ 0− r 2 = −r 2

In particular, we have
(a 0) −r 2 + 0 = −r 2
(b 0) 0− r 2 = −r 2
λ H 1 : −r 1 < −r 2.H 1

we proved ∀H 1 : −r 1 < −r 2.−r 1 < −r 2

Rewrite −r 2 with 0− r 2 by b 0
we get

(
−r 1 < 0− r 2→−r 1 < −r 2

)

Rewrite −r 1 with −r 1 + 0 by a

we get
(
−r 1 + 0 < 0− r 2→−r 1 < −r 2

)

Rewrite 0 with −r 1 + r 1 by
(
Rplus_Ropp_l r 1

)

we get
(
−r 1 + 0 < −r 1 + r 1− r 2→−r 1 < −r 2

)

Rewrite −r 1 + r 1− r 2 with −r 1 + r 1− r 2 by
(
Rplus_assoc −r 1 r 1 −r 2

)

we get
(
−r 1 + 0 < −r 1 + r 1− r 2→−r 1 < −r 2

)

Rewrite r 1− r 2 with −r 2 + r 1 by
(
Rplus_sym −r 2 r 1

)

we get
(
−r 1 + 0 < −r 1 + − r 2 + r 1→−r 1 < −r 2

)

(h 2)
(
Rplus_Ropp_l r 2

)

we proved −r 2 + r 2 = 0
(h 3)

(
Rlt_compatibility −r 2 r 2 r 1 H

)

we proved −r 2 + r 2 < −r 2 + r 1(
Rlt_compatibility −r 1 −r 2 + r 2 −r 2 + r 1 previous

)

we get −r 1 + − r 2 + r 2 < −r 1 + − r 2 + r 1

Rewrite 0 with −r 2 + r 2 by h 2 in h 1 and apply to h 3

we proved −r 1 < −r 2

we proved ∀ r 1 : R. ∀ r 2 : R. ∀H : r 1 > r 2.−r 1 < −r 2

Figure 2 Rendering of Coq term

ber of tasks to perform. Each one is applied on the result
of the previous one.

A different usage is to encompass the impossibility
to process in a same run the output generated (the well-
known result tree fragment limitation). To achieve this
result, we need an XSLT engine providing an HTTP
interface, as our UWOBO stylesheet manager (see next

section). By means of it, we can require, via the document

function, the application of a stylesheet to a document,
in order to process its output.

2. Automatic generation of notational stylesheets The
main user contributions expected are the notational style-
sheets; hence, the fact of providing them in a way as
simple as possible is fundamental. Luckily, notational

XML, Stylesheets and the Re-mathematization of Formal Content

Extreme Markup Languages 2001 25

Rgt_Ropp =

[r1,r2:R; H:(Rgt r1 r2)]

(eqT_ind_r R R0

[r:R]

(Rlt (Rplus (Ropp r1) r) (Rplus (Ropp r1) (Rplus (Ropp r2)

r1)))

->(Rlt (Ropp r1) (Ropp r2))

(eqT_ind_r R (Rplus r1 (Ropp r2))

[r:R]

(Rlt (Rplus (Ropp r1) R0) (Rplus (Ropp r1) r))

->(Rlt (Ropp r1) (Ropp r2))

(eqT_ind R (Rplus (Rplus (Ropp r1) r1) (Ropp r2))

[r:R](Rlt (Rplus (Ropp r1) R0) r)->(Rlt (Ropp r1) (Ropp

r2))

(eqT_ind_r R R0

[r:R]

(Rlt (Rplus (Ropp r1) R0) (Rplus r (Ropp r2)))

->(Rlt (Ropp r1) (Ropp r2))

(and_ind (Rplus (Ropp r1) R0)==(Ropp r1)

(Rplus R0 (Ropp r1))==(Ropp r1)

(Rlt (Rplus (Ropp r1) R0) (Rplus R0 (Ropp r2)))

->(Rlt (Ropp r1) (Ropp r2))

[a:((Rplus (Ropp r1) R0)==(Ropp r1));

_:((Rplus R0 (Ropp r1))==(Ropp r1))]

(eqT_ind_r R (Ropp r1)

[r:R]

(Rlt r (Rplus R0 (Ropp r2)))->(Rlt (Ropp r1)

(Ropp r2))

(and_ind (Rplus (Ropp r2) R0)==(Ropp r2)

(Rplus R0 (Ropp r2))==(Ropp r2)

(Rlt (Ropp r1) (Rplus R0 (Ropp r2)))

->(Rlt (Ropp r1) (Ropp r2))

[_:((Rplus (Ropp r2) R0)==(Ropp r2));

b0:((Rplus R0 (Ropp r2))==(Ropp r2))]

(eqT_ind_r R (Ropp r2)

[r:R](Rlt (Ropp r1) r)->(Rlt (Ropp r1) (Ropp

r2))

[H1:(Rlt (Ropp r1) (Ropp r2))]H1

(Rplus R0 (Ropp r2)) b0) (Rplus_ne (Ropp

r2)))

(Rplus (Ropp r1) R0) a) (Rplus_ne (Ropp r1)))

(Rplus (Ropp r1) r1) (Rplus_Ropp_l r1))

(Rplus (Ropp r1) (Rplus r1 (Ropp r2)))

(Rplus_assoc (Ropp r1) r1 (Ropp r2))) (Rplus (Ropp r2)

r1)

(Rplus_sym (Ropp r2) r1)) (Rplus (Ropp r2) r2)

(Rplus_Ropp_l r2)

(Rlt_compatibility (Ropp r1) (Rplus (Ropp r2) r2)

(Rplus (Ropp r2) r1) (Rlt_compatibility (Ropp r2) r2 r1

H)))

: (r1,r2:R)(Rgt r1 r2)->(Rlt (Ropp r1) (Ropp r2))

Figure 3 Coq term

stylesheets have a repetitive and quite uniform structure:
for example, all the templates to associate a particular
notation to a binary operation are almost identical. So,
we are going to provide a stylesheet to automatically gen-
erate notational stylesheets starting from a trivial user-
defined XML description of the notations, mainly com-
prising the URIs of the operators, their arities and the
corresponding MathML content element.

We have still to understand which amount of user
provided stylesheets could be automatically generated. In
particular, this seems much more difficult for the tem-
plates overriding the default natural language rendering.

We still suffer from well-known limitations of XSLT and
XPath, such as the limited support to regular expression func-
tionalities for text processing, the differences between node-
sets and result tree fragments, the impossibility to define keys
on documents stored as node-sets, the difficulty in using keys
on documents different from the current one.

8 CURRENT STATE
The library is accessible4 at the URL (Uniform Resource Lo-
cator) http://www.cs.unibo.it/helm/library.html. Each XML
file of Coq standard library can be currently consulted in
several different ways, corresponding to different stylesheets
applications. Stylesheets are applied on the fly to source XML
documents; stylesheet parameters can be passed at applica-
tion time to fine tune the requested rendering.

All the processing is done on the server side using
UWOBO (http://www.cs.unibo.it/helm/uwobo). UWOBO is
a Xalan5 based servlet which is capable of applying several
subsequent stylesheets to XML documents located anywhere
over the net. The source document, the stylesheets to apply
and the stylesheets parameters are specified in the dynamic
part of the URL used to contact the processor.

In a first prototype implementation we used Cocoon6 for
the processing of on-line documents. This solution had sev-
eral disadvantages, notably the lack of flexibility when the
same source XML document is going to be applied to differ-
ent stylesheet sequences depending on the user choices, as
in our cases. Moreover, Cocoon has been designed to be a
complete server-side publishing framework, whereas
UWOBO addresses only the task of stylesheet application and
management; thus it is small enough to make feasible its use
also in client-side processing so to reduce network commu-
nications.

User interaction with the library is allowed via client-side
DHTML (Dynamic HTML) only, implemented by means of
a suitable combination of JavaScript events and invocations
to the UWOBO processor. The main role of JavaScript con-

4. Please, be aware that the system is evolving daily, and you could easily
meet problems due to temporarily broken files or configurations.
5. http://xml.apache.org/xalan

6. http://xml.apache.org/cocoon/index.html

Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena

26 Extreme Markup Languages 2001

Figure 4 The global picture

sists in generating on-the-fly the URLs to control UWOBO;
such URLs depend on the user choices, as, for example, the
rendering format required. Currently, the following output
formats are provided:

1. The source XML file. It is possible to download the file
both in compressed and uncompressed format, indepen-
dently from its format on the server. In fact, the verbosity
of XML induced us to use also a compressed format for
the library documents. The un-compression is possibly
done on-the-fly at each request.

2. The MathML content format.
3. The MathML presentation format. Our MathML doc-

uments are some way peculiar, being made of huge for-
mulas representing proofs which usually spans over many
table lines; this require a fine-tuned control on the final
layout, based on many levels of nested tables. Current
browsers claiming to be MathML compliant (such as
Amaya and Mozilla) still have some problems rendering
such complex expressions; so we have developed our own
MathML browser (as a Gtk-widget) fully compliant to the
Recommendation of MathML 2.0. The widget is a quite
complex application (about 30.000 lines of C++), also
supporting quite distinctive forms of interaction.

4. The HTML format. Of course, this format provides just
an approximation of the expected rendering. When a
good sets of fonts is installed,7 though, the result is satis-
factory enough and makes the library available to a wide
basin of users.

7. Unix/Linux Netscape users must enable the right font-set, adding the
following line to their .Xdefaults file: Netscape*documentFonts.charset*adobe-

fontspecific: iso-8859-1

9 CONCLUSIONS
This work is part of a larger project aimed to exploit the po-
tentiality of XML technology for the creation and mainte-
nance of an electronic, distributed, hypertextual library of
formal mathematical knowledge. More details on the project
can be found at the URL http://www.cs.unibo.it/helm. This
paper is mainly focused on (Web-)publishing issues, stressing
the potentiality offered by a joint use of Stylesheets and
MathML. In particular, MathML provides both a powerful
presentational language supporting complex two-dimen-
sional mathematical notation, and an interesting “content”
level that can be profitably used, with a relevant improvement
in modularity, as an intermediate representation of the infor-
mation.

From the point of view of transformations, XSLT pro-
vides a standard, extensible and application independent lan-
guage for expressing notation. In this perspective, our role is
the development of a suitable architecture for the processing
of mathematical documents by means of stylesheets. More-
over, we are developing a modular core library of stylesheets
for the default rendering of documents; the aim of this library
is to hide the stylesheet complexity, allowing anyone to add
new notations and change the default rendering in a simple
way. We believe that the development of these specialised
notations could (and should) be conceived as a joint effort of
the whole proof assistant community.

BIBLIOGRAPHY

[APSS00a] A. Asperti, L. Padovani, C. Sacerdoti Coen, I. Schena.
Content-centric LogicalEnvironments. Short Communication at
the Fifteenth Annual IEEE Symposium on Logic in Computer
Science (LICS’2000), June 26–29, 2000, Santa Barbara, Califor-
nia.

[APSS00b] A. Asperti, L. Padovani, C. Sacerdoti Coen, I. Schena.
Formal Mathematics in MathML. Proceedings of the first Inter-
national Conference on MathML and Math on the Web

XML, Stylesheets and the Re-mathematization of Formal Content

Extreme Markup Languages 2001 27

(MathML 2000). October 20–21, 2000, Urbana-Champaign, IL,
USA.

[APSS00c] A. Asperti, L. Padovani, C. Sacerdoti Coen, I. Schena.
Towards a library of formal mathematics. Panel session of the 13th
International Conference on Theorem Proving in Higher Order
Logics (TPHOLS’2000), Portland, Oregon, USA.

[Cos00] Y. Coscoy. Explication textuelle de preuves pour le calcul
des constructions inductives. PhD Thesis, Université de Nice–
Sophia Antipolis, 2000.

[CK95] Y. Coscoy, G. Kahn, L. Thery. Extracting Text from Proofs.
Technical Report RR-2459, INRIA Sophia Antipolis, 1995.

[GLT89] Girard, Lafont, Taylor. Proofs and Types Cambridge Univ.
Press, Cambridge Tracts in Th. Comp. Sc., 1989.

[Coq] The Coq Proof Assistant Reference Manual. Version 6.3. IN-
RIA Internal Report. 1999.

[XML] eXtensible Markup Language (XML). Version 1.0, W3C
Recommendation February 1998. http://www.w3.org/XML.

[DOM] Document Object Model (DOM) Level 2 Specification.
Version 1.0, W3C Candidate Recommendation 13 November,
2000. http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113/

[XSLT] XSL Transformations (XSLT). Version 1.0, W3C Recom-
mendation 16 November 1999. http://www.w3.org/TR/xslt.

[MathML] Mathematical Markup Language (MathML) 2.0 W3C
Recommendation, 21 February 2001. http://www.w3.org/TR/
MathML2/.

[OMDoc] Open Mathematical Documents (OMDoc) 1.0, Novem-
ber 1 2000. http://www.mathweb.org/omdoc.

[XLink] XML Linking Language (XLink) Version 1.0. W3C Can-
didate Recommendation 3 July 2000.

[XPath] XML Path Language (XPath) Version 1.0, W3C Recom-
mendation 16 November 1999. http://www.w3.org/TR/xpath

[XPointer] XML Pointer Language (XPointer) Version 1.0. W3C
Candidate Recommendation.

BIOGRAPHY

Andrea Asperti was born in Italy in 1961. He was awarded a
Ph.D. in Computer Science by the University of Pisa in 1989.
In the same year he obtained a post-doc position at INRIA-
Rocquencourt where he was employed as a researcher in
1991. In 1992 he obtained the chair of Formal Languages
and Compilers at the Department of Computer Science of
the University of Bologna, becoming Full Professor in year
2000. He is currently teaching courses on Programming Lan-

guages, Theoretical Computer Science and Human-Com-
puter Interaction. He is a member of the W3C Advisory Com-
mittee.

Contributions to the Project: He is the supervisor and
main proponent of project HELM. He has contributed to the
development of a proof-checker for the logical XML files and
he is also contributing to the development of stylesheets for
natural language rendering of formal proofs.

Luca Padovani was born in Italy in 1974. He won a Ph.D.
fellowship in Computer Science in 1999. He worked on de-
sign and implementation of distributed concurrent languages
with mobile agents. His current interests cover Web Tech-
nologies, Web Publishing, concurrency models and func-
tional languages.

Contributions to the Project: He has designed and im-
plemented the Gtk-widget for the rendering of MathML pre-
sentation documents and he is co-author of UWOBO (a style-
sheet manager servlet). He is also in charge of the on-line
interface to the library.

Claudio Sacerdoti Coen was born in Italy in 1976. He won
a Ph.D. fellowship in Computer Science in 2001 and has
been working on project HELM since the begin of his master
thesis. His current interests cover Logical Frameworks, Proof
Assistants and their integration with XML-based Web Pub-
lishing technologies.

Contributions to the Project: He has defined the DTD
for the files exported from the Coq Proof Assistant and he has
also designed and implemented a Coq module to do the ex-
porting to XML. He is the developer of a prototype client-
side interface for the annotations of the proofs and of a proof-
checker working on the XML logical files. He is also
contributing to the Web interface.

Irene Schena was born in Italy in 1971. She won a Ph.D.
fellowship in Computer Science in 1998. She worked on the
application of linear logic to syntax analysis of natural lan-
guages. She joined the MathML Working Group in 1999.
Her current interests cover Web Technologies, in particular
applications of stylesheets (XSLT) and metadata (RDF).

Contributions to the Project: She is in charge of the
design and implementation of the stylesheet architecture of
project HELM. She is also contributing to the definition and
exploitation of the mathematical encodings generated starting
from the logical level XML documents.

