
A Gentle Introduction to
Concurrent TypeState-Oriented Programming

Silvia Crafa Luca Padovani

1 Preamble
An object-oriented programming language that supports TypeState-Oriented Programming (TSOP for
short) is recognizable by two distinctive features:

1. A suit of built-in constructs for de�ning objects with state-sensitive interfaces and behaviors.

2. A type system that detects object protocol violations.

In order to detect protocol violations, the type system must be able to track (a suitable abstraction of)
the state of objects with structured protocols, meaning that references to these objects must be shared in
controlled ways. It follows that languages supporting TSOP rely on some form of aliasing control.

In this tutorial we illustrate Concurrent TSOP, namely TSOP in a context where objects are concur-
rently accessed and possibly modi�ed by several processes. By de�nition, concurrent objects are generally
aliased. This makes it di�cult for the type system alone to track the state of concurrent objects, and there-
fore to determine whether the invocation of a certain operation at a certain point of the program is legal
or not. To tackle the challenge, we propose a hybrid technique that combines static checks (performed by
the type system) and dynamic synchronizations (provided by the runtime environment).

We advocate the use of the Objective Join Calculus (OJC for short) as a suitable formal model for
studying Concurrent TSOP for the following reasons:

• the OJC features objects, concurrency and high-level synchronization patterns;

• the idiomatic programming of objects in the OJC bears strong similarities with sequential TSOP
and supports the modeling of multidimensional states and of partial/concurrent state updates;

• the lack of a formal distinction between state and operations in the OJC permits the de�nition of a
simple, uni�ed type language for describing object interfaces, protocols, and aliasing capabilities.

The type system is detailed in:

• Silvia Crafa and Luca Padovani, The Chemical Approach to Typestate-Oriented Program-
ming, Proceedings of OOPSLA’15, http://dx.doi.org/10.1145/2814270.2814287.

1

2 Concurrent Linear Bu�er
The theme of this introduction is the modeling of a concurrent object in the Objective Join Calculus and
the speci�cation of its type so that a number of programming errors can be detected by a type checker.
The object that we consider, and that we elaborate through a series of steps, is a concurrent linear bu�er,
that is a bu�er used for exchanging one value from a producer process to a consumer process:

• the “linear” quali�cation indicates that the bu�er is meant to be discarded after the exchange.

• the “concurrent” quali�cation means that producer and consumer access the bu�er concurrently
without coordinating in any way. We have to rely on the runtime synchronization semantics of the
OJC to make sure that Get is executed only after the Put has been completed.

We can describe the life cycle of a concurrent linear bu�er as the transition diagram which speci�es
the three states of buffer can be (EMPTY, FULL or depleted) and the e�ect of Put and Get on them:

EMPTY FULL
Put Get

In the Objective Join Calculus, the bu�er is modeled as an object that handles four messages tagged
EMPTY, FULL, Put and Get. The former two messages encode the state of the bu�er. The lack of both
EMPTY and FULL means that the bu�er is depleted. The Put and Get messages represent the operations.
1 object buffer
2 [EMPTY & Put(v) I buffer!FULL(v)
3 | FULL(v) & Get(c) I c!Reply(v)]
4 buffer!EMPTY & // CONSTRUCTOR
5

6 buffer!Put(42) & // PRODUCER
7 System.Print(buffer.Get); done // CONSUMER

• The object behavior is determined by a set of reaction rules of the form pattern I body: when all
the messages in pattern reach buffer the reaction may �re, causing the atomic consumption of
these messages and the production of those in body.

• The operators & and ! respectively represent parallel composition and asynchronous output.

• The operator . is synchronous output. This operator can only be used in a context where a value or
continuation is expected, like within an expression (buffer.Get) or before sequential composition
; (System.Print). Synchronous operations are translated into asynchronous operations with ex-
plicit continuation passing. There is no need to manually create and pass continuations (contrast
the continuation c in the reaction on line 3 and the lack thereof in the invocation on line 7).

In principle, the de�nition of buffer allows producer and consumer to send arbitrary combinations
of EMPTY, FULL, Put and Get messages. In practice, not all such combinations are desirable or sensible:

• The producer may attempt to Put two values in the bu�er. Since the �rst Put that is processed
changes the state of the bu�er, the second Put will never trigger a reaction and becomes junk:

buffer!Put(42) & buffer!Put(43)

• The consumer may attempt to Get two values from the bu�er violating its linearity. In this case,
one Get message becomes junk and the consumer will starve:

System.Print(buffer.Get + buffer.Get); done

• Producer and/or consumer may interfere with the de�nition of buffer, for example by sending
state messages directly. This will likely disrupt the intended semantics of the linear bu�er and/or
generate junk messages and/or cause other undesired behavior:

buffer!EMPTY & buffer!FULL(43)

2

3 Types for Concurrent Objects
• We introduce a type language for specifying:

– the interface of objects, namely which messages they accept and the type of their arguments;
– the protocol of objects, namely how the messages in their interface are supposed to be sent;
– whether and how objects can be shared/aliased.

• Types are commutative regular expressions over message types:

t, s, r ::= 0
∣∣ 1

∣∣ M(t1, . . . , tn)
∣∣ t+ s

∣∣ t · s
∣∣ *t

– There is no legal way of using an object of type 0, even discarding the object is illegal.
– An object of type 1 can be discarded. No other usage is allowed.
– An object of type M(t1, . . . , tn) must be used for sending an M-tagged message with n argu-

ments having type t1, . . . , tn respectively.
– An object of type t + s must be used either according to t or according to s. It follows that

there must be one process that performs the choice.
– An object of type t · s must be used both according to t and also according to s, possibly

concurrently by two processes.
– An object of type *t can be used any number of times, each time according to t.

• There is no type for expressing the sequentiality of actions since the Objective Join Calculus, which
is purely asynchronous, has no native construct for sequential composition. Structured sequential
protocols can be modeled by means of continuation passing.

• The following semantic equivalences hold for all types t, s and r:

1 · t = t · 1 = t (1 is the unit of ·)
0 · t = t · 0 = 0 (0 is absorbing for ·)

0+ t = t+ 0 = t (0 is the unit of +)

t · s = s · t (· is commutative)
t · (s+ r) = t · s+ t · r (· distributes over +)

*t = 1+ t · *t (unlimited usage)

• Subtyping is de�ned according to the usual safe substitution principle: if t v s, then it is safe to
use an object of type t wherever an object of type s is expected. Subtyping is characterized by the
above equivalences, inverse language inclusion and argument contravariance:

t+ s v t t v s⇒ M(s) v M(t)

3

4 Typed Concurrent Linear Bu�er
In order to come up with a type for buffer, it may help looking again at its code and transition diagram
in Section 2. The transition diagram does not emphasize a fundamental di�erence between Put and Get:

• The producer knows that buffer is EMPTY when the message Put is sent.

• The consumer does not (and cannot) know whether buffer is EMPTY or FULLwhen the Getmessage
is sent: the actual state of buffer depends on whether its �rst reaction has already �red (in which
case EMPTY and Put have been consumed, and buffer is FULL) or not (in which case buffer is still
EMPTY and a Put operation will eventually change its state to FULL).

In summary, the transition diagram only illustrates the e�ect of the Put and Get operations on the
state of buffer, but does not make it clear that the consumer is allowed to send a Get message without
knowing for sure whether buffer is already FULL. The type language we have introduced in the previous
section allows us to �ll this gap, thus:

1 object buffer
2 : (EMPTY ·Put(?) + FULL(?)) ·Get(?) + 1
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | FULL(v) & Get(c) I c!Reply(v)]
5 buffer!EMPTY &
6

7 buffer!Put(42) &
8 System.Print(buffer.Get); done

• We specify the type of an object next to its name (line 2).

• We write ? for unspeci�ed types, which can generally be inferred. It is allowed to write ? anywhere
the type of a message argument is expected.

• The fact that the operation message Put is only combined with EMPTY indicates that the producer
can Put a value in buffer only when buffer is EMPTY.

• On the contrary, the fact that the operation message Get combines with both EMPTY and FULL
indicates that the consumer is allowed to issue Get not knowing whether buffer is EMPTY or FULL.
The runtime synchronization mechanism of the OJC ensures that the second reaction (line 4) �res
only when buffer is FULL.

• We use the type 1 to indicate the depleted buffer, to which no message is targeted (no junk).

• With this type for buffer all the mistakes we have described in Step 2 yield type errors.

4

5 Digression: Sequential Linear Bu�er
Having seen the type of the concurrent bu�er, it may be interesting to also have a look at that of the
sequential bu�er, namely a bu�er where the Get operation can only be issued when the buffer is surely
FULL. The �rst attempt is the following

1 object buffer
2 : EMPTY ·Put(?) + FULL(?) ·Get(?) + 1
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | FULL(v) & Get(c) I c!Reply(v)]
5 buffer!EMPTY &
6

7 buffer!Put(42) &
8 System.Print(buffer.Get); done // ERROR //

in which we have simply changed the type of buffer specifying that Get cannot be issued when buffer
is EMPTY. This code is obviously wrong for the consumer issues a Get message (line 8) at a time when the
state of buffer is not guaranteed to be FULL (the EMPTY and Put messages issued at lines 5 and 7 may
not have been consumed yet by the reaction on line 3).

As a second attempt, we may just remove the consumer altogether, obtaining:

1 object buffer
2 : EMPTY ·Put(?) + FULL(?) ·Get(?) + 1
3 [EMPTY & Put(v) I buffer!FULL(v) // ERROR //
4 | FULL(v) & Get(c) I c!Reply(v)]
5 buffer!EMPTY &
6

7 buffer!Put(42)

Also this version is obviously �awed given that there is no longer a consumer process. What is
interesting though is that the error message hints at the solution of the problem. The type error originates
from line 3, where the reaction consumes the EMPTY and Put messages and produces a FULL message. At
this point, all the outputs targeted to buffer (lines 3, 5 and 7) have been performed and buffer is in a
con�guration that contains FULL alone. This con�guration is illegal according to the type given on line 2,
since the sole con�guration that contains a FULL message should also contain a Get message. The idea is
that the capability to issue a Get message originates as soon as the FULL message is issued.

This discussion leads us to equip Put with a continuation, and to change the reaction on line 3 so that
another reference to buffer (having type Get) is communicated back to the producer, which can now
turn into a consumer and retrieve the value from the bu�er:

1 object buffer
2 : EMPTY ·Put(?,?) + FULL(?) ·Get(?) + 1
3 [EMPTY & Put(v,p) I buffer!FULL(v) & p!Reply(buffer)
4 | FULL(v) & Get(c) I c!Reply(v)]
5 buffer!EMPTY &
6

7 let buffer = buffer.Put(42) in
8 System.Print(buffer.Get); done

The code on lines 7–8 is now purely sequential. First of all, a Put message is sent to buffer (line 7).
This operation returns a continuation, which is another reference to the very same buffer except that
the type of this reference allows sending the Get message. This is what happens in line 8, where the
bu�er protocol comes �nally to an end.

Note that we had to slightly retouch the signature of Put (line 2) which now has 2 arguments.

5

6 Adding a Blocking Put

In this step we demonstrate the use of complex join patterns to extend the linear bu�er with a blocking
Put operation. The Objective Join Calculus is purely asynchronous, so there is no such thing as a truly
“blocking” operation. What we mean here is to realize a version of Put that noti�es the producer as soon
as the value in the bu�er is sent to the consumer. This way, after issuing a Put, the producer may block
waiting for this noti�cation.

1 object buffer
2 : (EMPTY ·(Put(?) + Put(?,?)) + FULL(?)) ·Get(?) + 1
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | EMPTY & Put(v,p) & Get(c) I p!Reply & c!Reply(v)
5 | FULL(v) & Get(c) I c!Reply(v)]
6

7 buffer!EMPTY &
8

9 buffer.Put(42);
10 System.Print("OK"); done &
11

12 System.Wait(3);
13 System.Print(buffer.Get); done

• We de�ne a new reaction that synchronizes simultaneously on EMPTY, Put and Get (line 4). When
all three messages have reached buffer and the reaction �res, the producer p is noti�ed and the
consumer c receives the value v.

• The new reaction changes the bu�er directly from EMPTY to the depleted state.

• The non-blocking Put is still supported (line 3). From the the consumer’s viewpoint the Get oper-
ation behaves just like before.

• No confusion may arise between the non-blocking Put which has 1 argument (line 3) and the
blocking Put which has 2 arguments (line 4). This is an example of message overloading, which is
resolved by looking at the number of arguments supplied to the Put message.

• The type now speci�es that the producer may choose the version of Put to use (line 2). It is illegal
for the producer to use both the blocking and the non-blocking versions of Put.

• Using the blocking Put requires a continuation which is created and passed implicitly (line 9). The
producer will not print OK before the value has been delivered to the consumer (line 10).

6

7 Adding a Non-Blocking Get

In this step we further extend the bu�er with a non-blocking Get operation, which we call Try.

1 object buffer
2 : (EMPTY ·(Put(?) + Put(?,?)) + FULL(?)) ·(Get(?) + Try(?)) + 1
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | EMPTY & Put(v,p) & Get(c) I p!Reply & c!Reply(v)
5 | EMPTY & Try(c) I buffer!EMPTY & c!Empty(buffer)
6 | EMPTY & Put(v,p) & Try(c) I p!Reply & c!Reply(v)
7 | FULL(v) & Try(c) I c!Reply(v)
8 | FULL(v) & Get(c) I c!Reply(v)]
9

10 buffer!EMPTY &
11

12 System.Wait(3);
13 buffer!Put(42) &
14

15 object Consumer
16 [Run(buffer, r) I

17 case buffer.Try of
18 [Empty(buffer) I

19 System.Print("Buffer still empty");
20 System.Wait(2);
21 Consumer!Run(buffer, r)
22 | Reply(v) I

23 System.Print(v);
24 r!Reply
25]
26]
27

28 Consumer.Run(buffer); done

• We add 3 reactions for Try, one for each non-depleted con�guration of buffer (lines 5-6).

• If buffer is FULL or there is a pending blocking Put, Try behaves just like Get (lines 6–7).

• If buffer is EMPTY and there is no Put message, Try noti�es the consumer with an Empty message
(line 5). Two important remarks are in order:

– the EMPTY message is re-generated because the state of buffer has not changed;
– the Empty noti�cation sent to the consumer c contains a reference to buffer. This is because

c will have to use buffer for either another Try or a Get.

• The type of buffer now speci�es that the consumer may choose either Get or Try (line 2).

• We cannot use the tag Get and rely on message overloading for the new operation (as we have
done for the two versions of Put) because Get and Try have the same number of arguments.

• The Consumer is represented as an object (lines 15–26). Consumer tries to get a value (line 17)
and analyzes the noti�cation returned by buffer with a case construct (lines 17–25). If Consumer
receives Empty (line 18) it waits for a little while (lines 19–20) before making another attempt
(line 21). If Consumer receives Reply (line 22) it prints the value (line 23) and terminates (line 24).

• The property that the case is exhaustive, namely that it handles (at least) all the possible responses
from buffer, is veri�ed by the type checker. Removing either case results in a type error.

7

8 Complete Type Speci�cation
This step illustrates the use of type names to give a complete protocol speci�cation for buffer.

1 type #Producer = Put(#Number) + Put(#Number, Reply)
2 and #Consumer = Get(Reply(#Number)) +
3 Try(Empty(#Consumer) + Reply(#Number)) in
4

5 object buffer
6 : (EMPTY ·#Producer + FULL(#Number)) ·#Consumer + 1
7 [EMPTY & Put(v) I buffer!FULL(v)
8 | EMPTY & Put(v,p) & Get(c) I p!Reply & c!Reply(v)
9 | EMPTY & Try(c) I buffer!EMPTY & c!Empty(buffer)

10 | EMPTY & Put(v,p) & Try(c) I p!Reply & c!Reply(v)
11 | FULL(v) & Try(c) I c!Reply(v)
12 | FULL(v) & Get(c) I c!Reply(v)]
13

14 buffer!EMPTY &
15

16 System.Wait(3);
17 buffer!Put(42) &
18

19 object Consumer
20 [Run(buffer, r) I

21 case buffer.Try of
22 [Empty(buffer) I

23 System.Print("Buffer still empty");
24 System.Wait(2);
25 Consumer!Run(buffer, r)
26 | Reply(v) I

27 System.Print(v);
28 r!Reply
29]
30]
31

32 Consumer.Run(buffer); done

• Type names and their expansion can be given at the beginning of the script (lines 1–3).

• The type #Consumer is equi-recursive: the name #Consumer occurs also on the right hand side of
=. Mutually recursive types are allowed.

• Non-contractive type de�nitions such as

type #A = #A

or

type #A = #A + Receive(Reply(#Number))

or

type #A = #B and #B = #A

are illegal.

• De�ned type names can be used in the speci�cation of object types (line 6).

8

9 From Linear to Persistent Bu�ers
In this step we demonstrate the de�nition of an object that can be shared among – and used by – exactly
one producer and an arbitrary number of consumers in a possibly concurrent way. We modify the con-
current bu�er so that the value stored therein can be retrieved by several consumers. For simplicity, we
consider the version of the bu�er without the blocking Put and the non-blocking Try.

A persistent bu�er has only two states, EMPTY and FULL. Once the content of the bu�er has been set,
the bu�er remains FULL so that its content can be retrieved an arbitrary number of times.

1 object buffer
2 : (EMPTY ·Put(?) + FULL(?)) ·*Get(?)
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | FULL(v) & Get(c) I buffer!FULL(v) & c!Reply(v)]
5

6 buffer!EMPTY &
7

8 System.Wait(3); // Expensive computation
9 buffer!Put(42) &

10

11 System.Print(buffer.Get); done &
12 System.Print(buffer.Get); done &
13 System.Print(buffer.Get); done &
14 System.Print(buffer.Get); done &
15 System.Print(buffer.Get); done &
16 System.Wait(5); done

• When the content of the persistent bu�er is read (line 4) the FULL message is restored, permitting
subsequent Get operations.

• The type of buffer speci�es that only one process is entitled to Put a value in it and that arbitrarily
many consumers can access it (line 2).

• The * type constructor can be used to specify an object that can be shared/aliased without restric-
tions. This is made possible by the equivalence

*t = *t · *t

that allows a reference of type *t to be “duplicated”, generating two references of type *t. This
relation allows the simultaneous use of buffer by several consumers (lines 11–15).

• An object of type *t need not be used and can be discarded, as indicated by the relation

*t v 1

9

10 Properties of Well-Typed Programs
The main property guaranteed for well-typed programs is protocol �delity:

Protocol Fidelity: If the type of an object prohibits sending a message M when the object is in a certain
state, then an object in that state will never have a pending M message. For example: Put is never
issued when buffer is FULL; no operation is issued on a depleted buffer.

A straightforward consequence of protocol �delity is message boundedness:

Boundedness: The type of an object gives precise upper bounds on the number of messages simultane-
ously targeted to the object. In particular, if there is no * in the type, then there is a �nite upper
bound obtained by counting the number of occurrences of tags in the largest valid message con-
�guration. All the versions of buffer we have discussed except the persistent one are bounded.
Moreover, in the persistent bu�er only the Get message is unbounded.

The following properties can be determined by means of a reachability analysis combining the infor-
mation in the type of an object and the structure of its reaction rules:

Junk Detection: It is possible to decide whether there are messages that are never consumed during the
entire lifetime of an object, or that will never be consumed after the object reaches a certain state.

Dead Code Detection: It is possible to decide whether there are reactions that will never �re during the
entire lifetime of an object, or that will never �re after an object reaches a certain state.

Type information can be used for optimizing objects in well-typed programs:

Garbage Collection: When a reaction changes the type of an object to 1, the object can be safely deal-
located. Even if there exist live references to the object, these must have type 1 meaning that
processes with a reference to the object can only discard it. This happens for all versions of the
linear bu�er, as soon as Get is performed.

The type system does not guarantee deadlock freedom. Below is a simple example of well-typed
program that causes a deadlock.

1 object buffer
2 : (EMPTY ·Put(?) + FULL(?)) ·Get(?) + 1
3 [EMPTY & Put(v) I buffer!FULL(v)
4 | FULL(v) & Get(c) I c!Reply(v)]
5 buffer!EMPTY &
6

7 buffer!Put(buffer.Get) // DEADLOCK //

Note that buffer is correctly initialized (line 5) and the outputs for both Put and Get do occur in the
syntax of the program. However, the argument of Put is the very same value that should be returned by
Get. This circularity is not detected by the type system.

10

